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Introduction

Time series data comes at different frequencies (e.g.
quarterly, monthly, daily)

Most models of interest involve more than one variable (e.g.
regression inolves a dependent variable and explanatory
variables)

Conventional time series modelling involves all variables at
same frequency

E.g. a VAR where all dependent variables are at monthly
frequency

Recently great interest in models with variables at different
frequencies

This lead to mixed frequency models
Reading: Ghysels and Marcellino chapter 13



Introduction

One of main methods for mixed frequencies is MIDAS (Mlxed
DAta Sampling)

Eric Ghysels (http://www.unc.edu/"eghysels/) is pioneer in
this field (and co-author of textbook for this course)

The midasr package is a rich tool that allows for estimating
MIDAS models in R

In this course, you will not be asked to estimate mixed
frequency models in computer labs



Why Mixed Frequencies?

A lot of data at various frequencies is available
More data means more information, so we should use it
Key macro variables (e.g. GDP growth) available quarterly

Other key macro variables: (e.g. inflation, industrial
production) are monthly

Google trends data is available weekly

Financial variables (stocks and bonds, exchange rates)
available daily

Regional UK Gross value added (GVA) data available annually



Why Mixed Frequencies?

® Post financial crisis macroeconomists criticized for not
including financial sector in their model

® Alessi, Ghysels, Onorante, Peach & Potter (2014) “Central
Bank Macroeconomic Forecasting During the Global Financial
Crisis: The European Central Bank and Federal Reserve Bank
of New York Experiences” Journal of Business & Economic
Statistics.

® Andreou, Ghysels & Kourtellos (2013) “Should

Macroeconomic Forecasters Use Daily Financial Data and
How?" Journal of Business & Economic Statistics



The Importance of Timeliness

Policymakers want to know key macro variables and what
they will be in the future

Use GDP as an example in this lecture, but can be any key
macro variable

Initial release of 2020Q4 GDP for UK will not be made until
April 2021

We do not even know what it is now
Growing field of “nowcasting”

Forecasting what is happening now



Digression: Real Time Data Flow

Important but no time to cover in this course (so rest of
lecture ignores this issue)

Initial estimate of GDP will be updated in subsequent quarters
Such “data revisions” may be large and important

For each observation (e.g. 2015Q4) there will be several
“vintages”

Initial release: available in 2016Q2
Second vintage: available in 2016Q3
etc.

Final vintage: estimate of 2015Q4 GDP available at the
present time



Digression: Real Time Data Flow
Terminology: Real time = forecast using vintage of data
which would have been available to forecaster at the time
forecast is made
E.g. when making a forecast in 2015Q4 of 2016Q1 or later,
forecaster would have available:

No value for 2015Q4 GDP

Initial estimate of 2015Q3 GDP

Second vintage of 2015Q2 GDP

etc.

Final vintage forecasting: forecast using most up to data
Final vintage: best guess at the true value of GDP

Real time: information which would have been available at
the time

For some purposes (e.g. DSGE modeling) final vintage is
better, for others (e.g. testing how well a forecasting model
would have worked if used in practice) real time data is better



The Importance of Timeliness

Many possible predictors for GDP (quarterly) observed at
higher (monthly, weekly, daily) frequencies

Financial data (e.g. stock prices) available immediately

“Soft” variables (e.g. surveys) available quickly and at
monthly frequency

E.g. Markit's Purchasing Manager's Index

Consumer confidence measures

“Hard" variables (e.g. industrial production) available fairly
quickly and at monthly frequency

Policymakers want to update nowcasts/forecasts quickly and
want to use this data



The Importance of Timeliness

Example: Updating forecasts on 1 October, 2008 (just after
Lehmann Brothers bankruptcy)

Everyone knows: financial crisis is happening and something
bad is going to happen to GDP growth

What about the time series econometrician?
Model 1: AR(4) for GDP growth

Model 2: Mixed frequency regression containing quarterly
GDP growth and daily financial variables



The Importance of Timeliness

Model 1: Forecasts for 2008Q4 released on 1 October depend
on last four quarters of GDP growth (and AR coefficients
estimated using long stable period of data)

Some of these quarters had pretty good GDP growth so
2008Q4 forecast likely will still look good

Due to release delays 2008Q3 GDP data not yet available

In practice, AR(4) forecasts will be very slow to adjust and
pick up that econonomy entering a recession.



The Importance of Timeliness

Model 2: Forecasts for 2008Q4 released on 1 October will
reflect information in financial variables in late September
Late September financial variables (esp. various asset
markets: credit default swaps, etc.) will reveal that financial
crisis has hit

1 October forecast will reflect this and show sharp downturn
in GDP growth

Mixed frequency models are much quicker to pick up changes
like this



Regression with Mixed Frequency Data

Y is dependent variable
Begin with single explanatory variable X

Notation relating to timing crucial (and different papers use
different notation)

Assume Y is quarterly (e.g. GDP growth)

t =1,.., T denotes time at quarterly frequency
X is daily (e.g. financial variables)

n=1,.., N denotes number of days in quarter

Typically N = 66 (22 trading days each month), but quarters
can differ by a day or two (ignore this)

Xn,t = observation for day n in quarter t



Regression with Mixed Frequency Data: Bridge Equations
® Simplest thing to do:
® Construct quarterly financial variable out of daily observations
® New variable
Xne + Xn-1,e + ..+ X1t
N

® Use conventional regression model

X =

Yt =ua+ ﬁXﬁ + &+
® Or, when forecasting h periods ahead
Yern = a+ BX{ + &

® Link from high to low frequency called “bridge”, hence bridge
equations

® This was old way of treating mixed frequencies

® Problems: misses timeliness issues

® All daily observations weighted equally



Regression with Mixed Frequency Data: MIDAS

® Why not simply run regression putting all the daily
observations on right hand side?

® Use forecasting horizon h =1 to illustrate ideas (methods
work for any h)

Yt+]_ =+ ‘B:[X:[’t + ...+ ,BNXN,t + Et

® When N is small this often done (e.g. quarterly/monthly
frequency mis-match has N = 3)

® This is unrestricted MIDAS (U-MIDAS)
e |f N is large run into Fat Data problems

® Proliferation of parameters



MIDAS

MIDAS uses distributed lag specifications to solve proliferation
of parameters problem

N—1
Yis1 =a+ B Z WN—j (9) XN—j,t + &
j=0
w,, (0) are weights given to each daily observation (sum to
one)
0 are parameters to be estimated

Explanatory variable is weighted average of all daily

observations in quarter

Bridge equation has w, (8) = % for each day

MIDAS weights differ and are estimated



MIDAS

MIDAS uses distributed lag specifications to estimate w, (6)
forn=1,..,N

Terminology: DL-MIDAS

Many DL forms are possible (see Ghysels and Marcellino
chapter 12.3 for more examples)

E.g. Almon lag, Beta, polynomial specification

E.g. exponential Almon

exp(61n + 62n?)
LY 1 exp(61) + 02/2)

w, (0) =

61 and 6, are parameters to estimate (only 2 of them so no
proliferation of parameters problem)

Graphs on next slide give examples of implications for weights
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Generalization of MIDAS models

DL-MIDAS contains:
no lagged dependent variables

precisely one quarter of daily observations as explanatory
variables

Often want to relax these two assumptions
autoregressive distributed lag MIDAS (ADL-MIDAS):

py—1 px—1N—1
Yer1 = a+ Z Pit1Ye—i+ P Z 2 WN—j+ixN (0) XN—jt—iT €t
i=0 j=

py lags of dependent variable

px lags of weighed average (over quarter) of daily observations



Econometrics of MIDAS Models

Straightforward methods for estimating distributed lag models
For U-MIDAS OLS estimation
For ADL-MIDAS nonlinear least squares can be used

Information criteria (AIC, BIC) can be used to select Py, Px of
for choice of weights



Multiplicative MIDAS Models

ADL-MIDAS model involved a single B (coefficient on
weighted average of all daily observations

Alternative (less parsimonious) is to first create quarterly
explanatory variable using DL weighting then put in regression

Let
N—1
X2 =) w-j (8) Xn-je
j=0
Then run regression:

py—1 px—1
Yir1 =a+ E Pit1Yi—i+ ﬁi+1X£,- + et
i—0 -0

1

]

Ghysels calls this ADL-MIDAS-M



MIDAS with Factors

Also possible to augment the MIDAS model with factors
E.g. dependent variable: quarterly GDP growth
daily financial variables

lots of other quarterly macro variables (e.g. from the FRED
data set) used for constructing factors (f;)

Factors could be principal components or can be treated as
states (see lecture on Factor Models)

py—1 pr—1
Yeirr = a+ Y, pisrYesi+ Y Pivafei+
i—0 i—0
px—1 N—1

,B Z 2 WN—_]-H*N XN—j,t—i‘f‘Et

i=0 j=



MIDAS with Factors

Or can construct factors out of high frequency variables
E.g. dependent variable: quarterly GDP growth

hundreds of daily financial variables (e.g. stocks, bonds,
derivatives, exchange rates, commodity prices, etc. etc.)

fn+ = factor for day n in quarter t

py—1 px—1 N—1

Yeri =a+ Z Pit1Ye—i+p E Z WN—jixn (8) fv—je—i + &t
i=0 j=0



MIDAS with Leads

e With MIDAS can constantly be updating nowcasts/forecasts
® E.g. every day release a new nowcast of 2019Q1 GDP growth
as new data comes in

® This is done using MIDAS with leads
py—1

Yiv1 = a+ Pi+1Ye—i+
i=0

L-1
:3[2 wi—j (0) Xn—je41+
=0
px—1 N—-1
Wh—jtixn (0) Xn—je—i] + €
i—0 j=o

® Note: this is for standard ADL-MIDAS, can also have version
for multiplicative MIDAS or MIDAS with factors



MIDAS with Leads

Look carefully at the new term
-1
Z wi—j (0) Xn—jt+1
j=0

L is number of leads (note t + 1 subscript)

E.g. L = 22 at the end of January, 2019 for nowcasts of
2019Q1

Daily observations on financial variables for January included
as exp. vars (Xn—_j ++1)
wi—;j (0) is weight function (usually distributed lag)

As each trading day goes by, L increases by 1 and new
nowcasts using updated info produced



Other Extensions of MIDAS

| will not cover many other extensions of MIDAS such as:
Markov switching MIDAS

Threshold MIDAS

See Chapter 12.3.5 of Ghysels and Marcellino textbook



Empirical lllustration

The textbook by Ghysels and Marcellino (Chapter 12.6) has
empirical example on "Nowcasting US GDP Growth”

Example shows how MIDAS used for nowcasting, forecasting
and predicting recessions

| encourage you to read it to get good understanding of
MIDAS methods

But too long (20 textbook pages) to cover in this lecture

Instead | will take an example from Armesto, Engemann and
Owyang “Forecasting with Mixed Frequencies” published in
Federal Reserve Bank of St. Louis Review



Empirical lllustration

Forecasting (quarterly) US GDP growth using (monthly)
employment growth data

See Armesto et al paper for details about data and
specification (e.g. lag length) choices

Armesto et al has more variables and more models and
forecasting horizons

Here | will focus just on MIDAS and Bridge Equation and
h=1

They use the exponential Almon weighting function in MIDAS



Digression: Evaluating Forecasts

Root mean squared forecast error (RMSFE) is common way of
measuring forecast performance

Choose forecast evaluation period (e.g. To,.., T)

Produce forecasts of Y; using data available at time 7 — 1,
call them YTF fort=1,.., T

N2
217’—:1'0 <Yt - Y'L'F)
T—1+1
Model with lower RMSFE is better

RMSFE =




Empirical lllustration

With bridge equation, we only have one forecast per quarter
(at end of quarter)

X{ is calculated for each quarter (once 3 months of quarter
are complete)

With MIDAS we have 3 forecasts per quarter (one at the end
of each month)

But if we compare the end of quarter forecasts of MIDAS with
bridge equation we obtain:

RMSFE for MIDAS: 0.5669
RMSFE for bridge equation: 0.5972
MIDAS forecasting a bit better than bridge equation



Empirical lllustration

Advantage with MIDAS is that we can update our forecasts of
GDP growth as each new month of employment data is
released

Figure on next slide shows:

RMSFE for forecasts made in first month of each quarter (i.e.
using data through end of previous quarter)

RMSFE for forecasts made in second month (also including
employment data for first month of each quarter)

RMSFE for forecasts made in third month (also including
employment data for second month of each quarter)

RMSFE is dropping as new data on employment growth is
included



RMSE
0.6501

0.6004

0.550+

0.5004

0.430

Forecasting GDP with Employment

2

Lead (Number of Months into Quarter)

3



MIDAS with More than One Explanatory Variable

® Preceding material describes MIDAS with one high frequency
explanatory variable

® What if you have several?

® Add more weighted averages of them into the MIDAS
regression

® Eg. if X, and Z,; are two high frequency variables:

N—-1 N—-1
Yit1 = a+B1 E Wﬁ,j (9) XN—jt + B2 Z Wﬁ,j (9) Zyn_jtt+Et
j=0 j=0

® w)X (0) are DL weights for X
® wZ (6) are DL weights for Z

® But a common alternative is to work with 2 MIDAS models
and then average results



Model Averaging with MIDAS

Before (single model) we had forecasts Y for T = 19,.., T
Now suppose m = 1, .., M different MIDAS models
E.g. M different financial variables to forecast GDP growth

Each individual model parsimonious

YF _is forecast of model m
Overall forecast:

M
YE =Y vm:Yihe
m=1
Vm,t IS weight attached to model m at time T

M
Zmzl Vm,t = 1



Model Averaging with MIDAS

How do we calculate weights? Several ways
Ghysel's Matlab code has:
Equal weights:

1

Vm,t = M
BIC weights: each model receives weight proportional to exp
of BIC

MSFE weights: each model receives weight inversely
proportional to MSFE

MSFE = mean squared forecast error

Discounted MSFE weights: as preceding but with more recent
forecast performance getting more weight

Weights can change over time
Which models get most weight?

Those which have forecast best in the past



Mixed Frequency Models as State Space Models

® MIDAS is most popular method for dealing with mixed
frequencies

® State space methods are also sometimes used

® More details will be given below in relation to mixed frequency
VARs, but the general strategy is:

® Assume all variables are at the higher frequency
® E.g. Y;is GDP for day t
® X, is a financial variable for day t

® Then build a conventional time series model (e.g. regression
or VAR)



Mixed Frequency Models as State Space Models

® Trouble: daily GDP is not observed, only quarterly
® Y, is only observed once every 66 days

® Rest of days missing value for Y;

® Treat missing value as unobserved states

® Estimate using state space model methods (e.g. Kalman
filter)

® Mixed frequency problem is turned into a missing value
problem

® State space methods often used for missing value problems of
various sorts



Mixed Frequency Models as State Space Models

® MIDAS and state space approach are closely related
® Ghysels' research has shown:

® MIDAS regression can also be viewed as a reduced form
representation of the state space model approach

® |n some cases the MIDAS regression is an exact representation
of the Kalman fillter (in other approximation errors are small)

® MIDAS has some advantages

® MIDAS does not require setting out a full state space system
of equations

® Writing out full state system usually more prone to
specification error and less parsimonious

® MIDAS computationally easier (nonlinear least squares versus
Kalman filtering/state smoothing)



Mixed Frequency VARs

VARs were covered in Econometrics 2

One of the most popular tools of modern macroeconomics
and finance

VAR(p) can be written as

Ojy—j+ &

P
Y =

Jj=1

yt is a vector of M variables (e.g. inflation, unemployment,
industrial production)
erisiid. N(0,Q)

O is M x M covariance matrix



Mixed Frequency VARs

To do impulse response analysis, usual work with structural
VAR

P
Ayt = Z Biy:—j + u;
=1

up is i.i.d. N (0, 1)
From Econometrics 2 you will know how to estimate VARs

Econometric estimation of mixed frequency VARs builds on
methods you will know from previous study



Mixed Frequency VARs

Several mixed frequency VARs exist
| will discuss two main approaches

Stacked VAR (Ghysels and Marcellino call this the
" Observation Driven Approach”)

State space VAR (G+M call this the " Parameter Driven
Approach™)



The Stacked VAR

[llustrate assuming one variable is monthly (X), the other
quarterly (2)

t=1,.., T are quarters
In any quarter, we have 3 monthly values of X:
X1,6.X0,6, X3t

The stacked VAR is a VAR with the vector of dependent
variables being:

X1t



The Stacked VAR

In any quarter, month 1 occurs before month 2 which occurs
before month 3

It is common to work with a structural version of the stacked
VAR which imposes this information

al 0 0 0

a a 0 0
A= 2,1 2,2

a3l az2 a33 0

41 d42 343 a4

Structural VARs covered in Econometrics 2 so no new
econometric issues



The Stacked VAR

In one sense, stacked VARs are easy — they are just VARs
But they can easily become Big VARs

With one monthly and one quarterly variable, stacked VAR
has 4 variables (M = 4)

With two monthly and three quarterly variables, M =9
With one daily and one quarterly variable, M = 67
etc..

Bayesian methods often used with such Big VARs



The State Space VAR

[llustrate assuming one variable is monthly (X), the other
quarterly (Z)

NOW | AM CHANGING TIMING NOTATION
t=1,.., T are MONTHS

X is known data

Z: is NOT known data

Suppose we want to work with a VAR with dependent

variables:
_ [ X
Yr = Z,

Problem: Z; is not known

Solution: treat Z; as states in a state space model



The State Space VAR

Exactly what is known about Z; depends on whether it is in
(log) levels (e.g. GDP) or growth rates (e.g. GDP growth)
Here assume (log) levels and the data is:

ZtQ is total GDP produced over the quarter (i.e. over the last
3 months)

At the end of any quarter, we will observe

Z =2+ Z 1+ Zi

When data is logged this relationship is approximate

Can write as
Z;

ZtQ = A Zi
Zio
where A = (1,1,1)
Different data transformations (e.g. growth rates) and
frequencies of data imply A has different form



The State Space VAR

ZtQ is a quarterly variable so will be observed in March, June,
September and December

In other months, ZtQ is not observed

Stats agency does tell us GDP for 1st quarter (January,
February and March)

Stats agency does NOT tell us GDP for other three monthly
periods (February, March and April)

Define M; to capture this pattern

M; = 1 when t is at end of quarter (March, June, Sept,
December)

M; is an empty matrix for all other months



The State Space VAR

Combining the previous two slides we have the relationship:

Zy
ZtQ = AM; Zia
Zi o

This is measurement equation in state space model capturing
following ideas:

Zi, Zy—1 and Z;_» are unknown states
At the end of every quarter we observe their sum
In all other months we do not observe anything

AMy; is a system matrix (see page 55 of lecture slides on state
space models)
Measurement equation does not have any errors but this is

fine (see page 53 of lecture slides on state space models and
set Xt = 0)



State Space VAR: Summary

State space methods can be used to create a mixed frequency
VAR

State equation is just a VAR

@jytf_j + &

P
Y =

j=1

Zy
Measurement equation captures relationship between Z; and
observed data (Z9)

Standard econometric methods for state space models can be
used

But y; = ( Xt ) and Z; are unobserved states



Summary

Macroeconomists/financial researchers increasingly want to
work with mixed frequencies

This lecture covered mixed frequency regressions and mixed
frequency vars

These can be parameter-rich (Fat Data)

MIDAS is a parsimonious (and computationally simple) way of
working with mixed frequency data

Stacked VAR is a simple way of building a VAR with mixed
frequency data

State space methods also be built into a VAR to handle mixed
frequency data



