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Introduction

• Time series data comes at different frequencies (e.g.
quarterly, monthly, daily)

• Most models of interest involve more than one variable (e.g.
regression inolves a dependent variable and explanatory
variables)

• Conventional time series modelling involves all variables at
same frequency

• E.g. a VAR where all dependent variables are at monthly
frequency

• Recently great interest in models with variables at different
frequencies

• This lead to mixed frequency models

• Reading: Ghysels and Marcellino chapter 13



Introduction

• One of main methods for mixed frequencies is MIDAS (MIxed
DAta Sampling)

• Eric Ghysels (http://www.unc.edu/˜eghysels/) is pioneer in
this field (and co-author of textbook for this course)

• The midasr package is a rich tool that allows for estimating
MIDAS models in R

• In this course, you will not be asked to estimate mixed
frequency models in computer labs



Why Mixed Frequencies?

• A lot of data at various frequencies is available

• More data means more information, so we should use it

• Key macro variables (e.g. GDP growth) available quarterly

• Other key macro variables: (e.g. inflation, industrial
production) are monthly

• Google trends data is available weekly

• Financial variables (stocks and bonds, exchange rates)
available daily

• Regional UK Gross value added (GVA) data available annually



Why Mixed Frequencies?

• Post financial crisis macroeconomists criticized for not
including financial sector in their model

• Alessi, Ghysels, Onorante, Peach & Potter (2014) “Central
Bank Macroeconomic Forecasting During the Global Financial
Crisis: The European Central Bank and Federal Reserve Bank
of New York Experiences” Journal of Business & Economic
Statistics.

• Andreou, Ghysels & Kourtellos (2013) “Should
Macroeconomic Forecasters Use Daily Financial Data and
How?” Journal of Business & Economic Statistics



The Importance of Timeliness

• Policymakers want to know key macro variables and what
they will be in the future

• Use GDP as an example in this lecture, but can be any key
macro variable

• Initial release of 2020Q4 GDP for UK will not be made until
April 2021

• We do not even know what it is now

• Growing field of “nowcasting”

• Forecasting what is happening now



Digression: Real Time Data Flow

• Important but no time to cover in this course (so rest of
lecture ignores this issue)

• Initial estimate of GDP will be updated in subsequent quarters

• Such “data revisions” may be large and important

• For each observation (e.g. 2015Q4) there will be several
“vintages”

• Initial release: available in 2016Q2

• Second vintage: available in 2016Q3

• etc.

• Final vintage: estimate of 2015Q4 GDP available at the
present time



Digression: Real Time Data Flow
• Terminology: Real time = forecast using vintage of data

which would have been available to forecaster at the time
forecast is made

• E.g. when making a forecast in 2015Q4 of 2016Q1 or later,
forecaster would have available:

• No value for 2015Q4 GDP
• Initial estimate of 2015Q3 GDP
• Second vintage of 2015Q2 GDP
• etc.
• Final vintage forecasting: forecast using most up to data
• Final vintage: best guess at the true value of GDP
• Real time: information which would have been available at

the time
• For some purposes (e.g. DSGE modeling) final vintage is

better, for others (e.g. testing how well a forecasting model
would have worked if used in practice) real time data is better



The Importance of Timeliness

• Many possible predictors for GDP (quarterly) observed at
higher (monthly, weekly, daily) frequencies

• Financial data (e.g. stock prices) available immediately

• “Soft” variables (e.g. surveys) available quickly and at
monthly frequency

• E.g. Markit’s Purchasing Manager’s Index

• Consumer confidence measures

• “Hard” variables (e.g. industrial production) available fairly
quickly and at monthly frequency

• Policymakers want to update nowcasts/forecasts quickly and
want to use this data



The Importance of Timeliness

• Example: Updating forecasts on 1 October, 2008 (just after
Lehmann Brothers bankruptcy)

• Everyone knows: financial crisis is happening and something
bad is going to happen to GDP growth

• What about the time series econometrician?

• Model 1: AR(4) for GDP growth

• Model 2: Mixed frequency regression containing quarterly
GDP growth and daily financial variables



The Importance of Timeliness

• Model 1: Forecasts for 2008Q4 released on 1 October depend
on last four quarters of GDP growth (and AR coefficients
estimated using long stable period of data)

• Some of these quarters had pretty good GDP growth so
2008Q4 forecast likely will still look good

• Due to release delays 2008Q3 GDP data not yet available

• In practice, AR(4) forecasts will be very slow to adjust and
pick up that econonomy entering a recession.



The Importance of Timeliness

• Model 2: Forecasts for 2008Q4 released on 1 October will
reflect information in financial variables in late September

• Late September financial variables (esp. various asset
markets: credit default swaps, etc.) will reveal that financial
crisis has hit

• 1 October forecast will reflect this and show sharp downturn
in GDP growth

• Mixed frequency models are much quicker to pick up changes
like this



Regression with Mixed Frequency Data

• Y is dependent variable

• Begin with single explanatory variable X

• Notation relating to timing crucial (and different papers use
different notation)

• Assume Y is quarterly (e.g. GDP growth)

• t = 1, ..,T denotes time at quarterly frequency

• X is daily (e.g. financial variables)

• n = 1, ..,N denotes number of days in quarter

• Typically N = 66 (22 trading days each month), but quarters
can differ by a day or two (ignore this)

• Xn,t = observation for day n in quarter t



Regression with Mixed Frequency Data: Bridge Equations
• Simplest thing to do:
• Construct quarterly financial variable out of daily observations
• New variable

X q
t =

XN,t + XN−1,t + ..+ X1,t

N

• Use conventional regression model

Yt = α + βX q
t + εt

• Or, when forecasting h periods ahead

Yt+h = α + βX q
t + εt

• Link from high to low frequency called “bridge”, hence bridge
equations

• This was old way of treating mixed frequencies
• Problems: misses timeliness issues
• All daily observations weighted equally



Regression with Mixed Frequency Data: MIDAS

• Why not simply run regression putting all the daily
observations on right hand side?

• Use forecasting horizon h = 1 to illustrate ideas (methods
work for any h)

Yt+1 = α + β1X1,t + ...+ βNXN,t + εt

• When N is small this often done (e.g. quarterly/monthly
frequency mis-match has N = 3)

• This is unrestricted MIDAS (U-MIDAS)

• If N is large run into Fat Data problems

• Proliferation of parameters



MIDAS

• MIDAS uses distributed lag specifications to solve proliferation
of parameters problem

•

Yt+1 = α + β
N−1

∑
j=0

wN−j (θ)XN−j ,t + εt

• wn (θ) are weights given to each daily observation (sum to
one)

• θ are parameters to be estimated

• Explanatory variable is weighted average of all daily
observations in quarter

• Bridge equation has wn (θ) =
1
N for each day

• MIDAS weights differ and are estimated



MIDAS

• MIDAS uses distributed lag specifications to estimate wn (θ)
for n = 1, ..,N

• Terminology: DL-MIDAS

• Many DL forms are possible (see Ghysels and Marcellino
chapter 12.3 for more examples)

• E.g. Almon lag, Beta, polynomial specification

• E.g. exponential Almon

wn (θ) =
exp(θ1n+ θ2n

2)

∑N
j=1 exp(θ1j + θ2j2)

• θ1 and θ2 are parameters to estimate (only 2 of them so no
proliferation of parameters problem)

• Graphs on next slide give examples of implications for weights





Generalization of MIDAS models

• DL-MIDAS contains:

• no lagged dependent variables

• precisely one quarter of daily observations as explanatory
variables

• Often want to relax these two assumptions

• autoregressive distributed lag MIDAS (ADL-MIDAS):

Yt+1 = α+
py−1

∑
i=0

ρi+1Yt−i + β
px−1

∑
i=0

N−1

∑
j=0

wN−j+i∗N (θ)XN−j ,t−i + εt

• py lags of dependent variable

• px lags of weighed average (over quarter) of daily observations



Econometrics of MIDAS Models

• Straightforward methods for estimating distributed lag models

• For U-MIDAS OLS estimation

• For ADL-MIDAS nonlinear least squares can be used

• Information criteria (AIC, BIC) can be used to select py , px or
for choice of weights



Multiplicative MIDAS Models

• ADL-MIDAS model involved a single β (coefficient on
weighted average of all daily observations

• Alternative (less parsimonious) is to first create quarterly
explanatory variable using DL weighting then put in regression

• Let

XQ
t =

N−1

∑
j=0

wN−j (θ)XN−j ,t

• Then run regression:

Yt+1 = α +
py−1

∑
i=0

ρi+1Yt−i +
px−1

∑
i=0

βi+1X
Q
t−i + εt

• Ghysels calls this ADL-MIDAS-M



MIDAS with Factors

• Also possible to augment the MIDAS model with factors

• E.g. dependent variable: quarterly GDP growth

• daily financial variables

• lots of other quarterly macro variables (e.g. from the FRED
data set) used for constructing factors (ft)

• Factors could be principal components or can be treated as
states (see lecture on Factor Models)

•

Yt+1 = α +
py−1

∑
i=0

ρi+1Yt−i +
pf −1

∑
i=0

ϕi+1ft−i +

β
px−1

∑
i=0

N−1

∑
j=0

wN−j+i∗N (θ)XN−j ,t−i + εt



MIDAS with Factors

• Or can construct factors out of high frequency variables

• E.g. dependent variable: quarterly GDP growth

• hundreds of daily financial variables (e.g. stocks, bonds,
derivatives, exchange rates, commodity prices, etc. etc.)

• fn,t = factor for day n in quarter t

Yt+1 = α+
py−1

∑
i=0

ρi+1Yt−i + β
px−1

∑
i=0

N−1

∑
j=0

wN−j+i∗N (θ) fN−j ,t−i + εt



MIDAS with Leads

• With MIDAS can constantly be updating nowcasts/forecasts

• E.g. every day release a new nowcast of 2019Q1 GDP growth
as new data comes in

• This is done using MIDAS with leads

Yt+1 = α +
py−1

∑
i=0

ρi+1Yt−i +

β[
L−1

∑
j=0

wL−j (θ)XN−j ,t+1 +

px−1

∑
i=0

N−1

∑
j=0

wN−j+i∗N (θ)XN−j ,t−i ] + εt

• Note: this is for standard ADL-MIDAS, can also have version
for multiplicative MIDAS or MIDAS with factors



MIDAS with Leads

• Look carefully at the new term

L−1

∑
j=0

wL−j (θ)XN−j ,t+1

• L is number of leads (note t + 1 subscript)

• E.g. L = 22 at the end of January, 2019 for nowcasts of
2019Q1

• Daily observations on financial variables for January included
as exp. vars (XN−j ,t+1)

• wL−j (θ) is weight function (usually distributed lag)

• As each trading day goes by, L increases by 1 and new
nowcasts using updated info produced



Other Extensions of MIDAS

• I will not cover many other extensions of MIDAS such as:

• Markov switching MIDAS

• Threshold MIDAS

• See Chapter 12.3.5 of Ghysels and Marcellino textbook



Empirical Illustration

• The textbook by Ghysels and Marcellino (Chapter 12.6) has
empirical example on ”Nowcasting US GDP Growth”

• Example shows how MIDAS used for nowcasting, forecasting
and predicting recessions

• I encourage you to read it to get good understanding of
MIDAS methods

• But too long (20 textbook pages) to cover in this lecture

• Instead I will take an example from Armesto, Engemann and
Owyang “Forecasting with Mixed Frequencies”published in
Federal Reserve Bank of St. Louis Review



Empirical Illustration

• Forecasting (quarterly) US GDP growth using (monthly)
employment growth data

• See Armesto et al paper for details about data and
specification (e.g. lag length) choices

• Armesto et al has more variables and more models and
forecasting horizons

• Here I will focus just on MIDAS and Bridge Equation and
h = 1

• They use the exponential Almon weighting function in MIDAS



Digression: Evaluating Forecasts

• Root mean squared forecast error (RMSFE) is common way of
measuring forecast performance

• Choose forecast evaluation period (e.g. τ0, ..,T )

• Produce forecasts of Yτ using data available at time τ − 1,
call them Ŷ F

τ for τ = τ0, ..,T

•

RMSFE =

√√√√∑T
τ=τ0

(
Yt − Ŷ F

τ

)2

T − τ0 + 1

• Model with lower RMSFE is better



Empirical Illustration

• With bridge equation, we only have one forecast per quarter
(at end of quarter)

• X q
t is calculated for each quarter (once 3 months of quarter

are complete)

• With MIDAS we have 3 forecasts per quarter (one at the end
of each month)

• But if we compare the end of quarter forecasts of MIDAS with
bridge equation we obtain:

• RMSFE for MIDAS: 0.5669

• RMSFE for bridge equation: 0.5972

• MIDAS forecasting a bit better than bridge equation



Empirical Illustration

• Advantage with MIDAS is that we can update our forecasts of
GDP growth as each new month of employment data is
released

• Figure on next slide shows:

• RMSFE for forecasts made in first month of each quarter (i.e.
using data through end of previous quarter)

• RMSFE for forecasts made in second month (also including
employment data for first month of each quarter)

• RMSFE for forecasts made in third month (also including
employment data for second month of each quarter)

• RMSFE is dropping as new data on employment growth is
included





MIDAS with More than One Explanatory Variable

• Preceding material describes MIDAS with one high frequency
explanatory variable

• What if you have several?

• Add more weighted averages of them into the MIDAS
regression

• E.g. if Xn,t and Zn,t are two high frequency variables:

Yt+1 = α+ β1

N−1

∑
j=0

wX
N−j (θ)XN−j ,t + β2

N−1

∑
j=0

wZ
N−j (θ)ZN−j ,t + εt

• wX
n (θ) are DL weights for X

• wZ
n (θ) are DL weights for Z

• But a common alternative is to work with 2 MIDAS models
and then average results



Model Averaging with MIDAS

• Before (single model) we had forecasts Ŷ F
τ for τ = τ0, ..,T

• Now suppose m = 1, ..,M different MIDAS models

• E.g. M different financial variables to forecast GDP growth

• Each individual model parsimonious

• Ŷ F
m,τ is forecast of model m

• Overall forecast:

Ŷ F
τ =

M

∑
m=1

vm,τŶ
F
m,τ

• vm,τ is weight attached to model m at time τ

• ∑M
m=1 vm,t = 1



Model Averaging with MIDAS
• How do we calculate weights? Several ways

• Ghysel’s Matlab code has:

• Equal weights:

vm,τ =
1

M
• BIC weights: each model receives weight proportional to exp

of BIC

• MSFE weights: each model receives weight inversely
proportional to MSFE

• MSFE = mean squared forecast error

• Discounted MSFE weights: as preceding but with more recent
forecast performance getting more weight

• Weights can change over time

• Which models get most weight?

• Those which have forecast best in the past



Mixed Frequency Models as State Space Models

• MIDAS is most popular method for dealing with mixed
frequencies

• State space methods are also sometimes used

• More details will be given below in relation to mixed frequency
VARs, but the general strategy is:

• Assume all variables are at the higher frequency

• E.g. Yt is GDP for day t

• Xt is a financial variable for day t

• Then build a conventional time series model (e.g. regression
or VAR)



Mixed Frequency Models as State Space Models

• Trouble: daily GDP is not observed, only quarterly

• Yt is only observed once every 66 days

• Rest of days missing value for Yt

• Treat missing value as unobserved states

• Estimate using state space model methods (e.g. Kalman
filter)

• Mixed frequency problem is turned into a missing value
problem

• State space methods often used for missing value problems of
various sorts



Mixed Frequency Models as State Space Models

• MIDAS and state space approach are closely related

• Ghysels’ research has shown:

• MIDAS regression can also be viewed as a reduced form
representation of the state space model approach

• In some cases the MIDAS regression is an exact representation
of the Kalman fillter (in other approximation errors are small)

• MIDAS has some advantages

• MIDAS does not require setting out a full state space system
of equations

• Writing out full state system usually more prone to
specification error and less parsimonious

• MIDAS computationally easier (nonlinear least squares versus
Kalman filtering/state smoothing)



Mixed Frequency VARs

• VARs were covered in Econometrics 2

• One of the most popular tools of modern macroeconomics
and finance

• VAR(p) can be written as

yt =
p

∑
j=1

Θjyt−j + εt

• yt is a vector of M variables (e.g. inflation, unemployment,
industrial production)

• εt is i.i.d. N (0,Ω)

• Ω is M ×M covariance matrix



Mixed Frequency VARs

• To do impulse response analysis, usual work with structural
VAR

Ayt =
p

∑
j=1

Bjyt−j + ut

• ut is i.i.d. N (0, I )

• From Econometrics 2 you will know how to estimate VARs

• Econometric estimation of mixed frequency VARs builds on
methods you will know from previous study



Mixed Frequency VARs

• Several mixed frequency VARs exist

• I will discuss two main approaches

• Stacked VAR (Ghysels and Marcellino call this the
”Observation Driven Approach”)

• State space VAR (G+M call this the ”Parameter Driven
Approach”)



The Stacked VAR

• Illustrate assuming one variable is monthly (X ), the other
quarterly (Z )

• t = 1, ..,T are quarters

• In any quarter, we have 3 monthly values of X :

• X1,t ,X2,t ,X3,t

• The stacked VAR is a VAR with the vector of dependent
variables being:

• yt =


X1,t

X2,t

X3,t

Zt





The Stacked VAR

• In any quarter, month 1 occurs before month 2 which occurs
before month 3

• It is common to work with a structural version of the stacked
VAR which imposes this information

•

A =


a1,1 0 0 0
a2,1 a2,2 0 0
a3,1 a3,2 a3,3 0
a4,1 a4,2 a4,3 a4,4


• Structural VARs covered in Econometrics 2 so no new

econometric issues



The Stacked VAR

• In one sense, stacked VARs are easy – they are just VARs

• But they can easily become Big VARs

• With one monthly and one quarterly variable, stacked VAR
has 4 variables (M = 4)

• With two monthly and three quarterly variables, M = 9

• With one daily and one quarterly variable, M = 67

• etc..

• Bayesian methods often used with such Big VARs



The State Space VAR

• Illustrate assuming one variable is monthly (X ), the other
quarterly (Z )

• NOW I AM CHANGING TIMING NOTATION

• t = 1, ..,T are MONTHS

• Xt is known data

• Zt is NOT known data

• Suppose we want to work with a VAR with dependent
variables:

yt =

(
Xt

Zt

)
• Problem: Zt is not known

• Solution: treat Zt as states in a state space model



The State Space VAR
• Exactly what is known about Zt depends on whether it is in

(log) levels (e.g. GDP) or growth rates (e.g. GDP growth)
• Here assume (log) levels and the data is:
• ZQ

t is total GDP produced over the quarter (i.e. over the last
3 months)

• At the end of any quarter, we will observe

ZQ
t = Zt + Zt−1 + Zt−1

• When data is logged this relationship is approximate
• Can write as

ZQ
t = Λ

 Zt

Zt−1

Zt−2


where Λ = (1, 1, 1)

• Different data transformations (e.g. growth rates) and
frequencies of data imply Λ has different form



The State Space VAR

• ZQ
t is a quarterly variable so will be observed in March, June,

September and December

• In other months, ZQ
t is not observed

• Stats agency does tell us GDP for 1st quarter (January,
February and March)

• Stats agency does NOT tell us GDP for other three monthly
periods (February, March and April)

• Define Mt to capture this pattern

• Mt = 1 when t is at end of quarter (March, June, Sept,
December)

• Mt is an empty matrix for all other months



The State Space VAR
• Combining the previous two slides we have the relationship:

ZQ
t = ΛMt

 Zt

Zt−1

Zt−2


• This is measurement equation in state space model capturing

following ideas:

• Zt ,Zt−1 and Zt−2 are unknown states

• At the end of every quarter we observe their sum

• In all other months we do not observe anything

• ΛMt is a system matrix (see page 55 of lecture slides on state
space models)

• Measurement equation does not have any errors but this is
fine (see page 53 of lecture slides on state space models and
set Σt = 0)



State Space VAR: Summary

• State space methods can be used to create a mixed frequency
VAR

• State equation is just a VAR

yt =
p

∑
j=1

Θjyt−j + εt

• But yt =

(
Xt

Zt

)
and Zt are unobserved states

• Measurement equation captures relationship between Zt and
observed data (ZQ

t )

• Standard econometric methods for state space models can be
used



Summary

• Macroeconomists/financial researchers increasingly want to
work with mixed frequencies

• This lecture covered mixed frequency regressions and mixed
frequency vars

• These can be parameter-rich (Fat Data)

• MIDAS is a parsimonious (and computationally simple) way of
working with mixed frequency data

• Stacked VAR is a simple way of building a VAR with mixed
frequency data

• State space methods also be built into a VAR to handle mixed
frequency data


