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Markov Switching Models

• Popular class of regime-switching model

• Similar idea to state space model

• Latent variable (similar to state) denotes which regime you
are in

• Automatically classifies observations into regimes

• Illustrate for AR(1) model with two regimes

• Ideas go through for AR(p) (or time series regression or
VARs) with many regimes



Markov Switching Models

•
yt =

{
ρ1yt−1 + ε1t if st = 1
ρ2yt−1 + ε2t if st = 2

• Different AR models depending on whether st = 1 or 2

• Similar structure to TAR

• Would be a TAR if we were to define “regime indicator” or
“state” st as

• st = 1 if zt ≤ τ

• st = 2 if zt > τ

• But Markov switching model defines st differently



Markov Switching Models

• st is hidden two-state Markov chain

• What does this mean?

• “Hidden” means not directly observed (latent) similar to
states

• Wikipedia’s definition of Markov Chain:

• ‘random process that undergoes transitions from one state to
another on a state space. It must possess a property that is
usually characterized as memorylessness: the probability
distribution of the next state depends only on the current
state and not on the sequence of events that preceded it.’



Markov Switching Models

• E.g. Suppose st = 1,what is st+1?

• Can either stay in regime 1, or switch (transition) to regime 2

Pr (st+1 = 1|st = 1) = p11

Pr (st+1 = 2|st = 1) = p12

• Probability of switching depends only on st (not on st−1 or
any past data, etc. = memoryless)

• E.g. suppose st = 1 is recession, 2 is expansion

• p11 is probability of staying in recession next period

• p12 is probability of switching from regime 1 to 2

• I.e. out of recession into expansion (turning point of business
cycle)

• p12 = 1− p11



Markov Switching Models

• Similarly can define a p22 as probability of staying in regime 2
given currently in regime 2

•

Pr (st+1 = 1|st = 2) = p21

Pr (st+1 = 2|st = 2) = p22

• p21 = 1− p22 is probability of switching from regime 2 to 1

• e.g. switching from expansion to recession

• Used for dating turning points in business cycles, calculating
probability economy will go into recession, etc.



Markov Switching Models

• Definition:

yt =

{
ρ1yt−1 + ε1t if st = 1
ρ2yt−1 + ε2t if st = 2

•
Pr (st+1 = j |st = i) = pij

• var (εjt) = σ2
j

• Can have σ2
1 ̸= σ2

2 (regimes have different error variances)

• Or can have σ2
1 = σ2

2 (homoskedastic: regimes have same
error variances)



Markov Switching Models

• Can estimate Markov switching model, e.g., in Stata using
maximum likelihood

• Estimates of pij and st for t = 1, ..,T provided

• Can use information criteria to choose between Markov
switching and other models

• st tells you which observation is in which regime



Markov Switching Models

• Important difference with TAR

• TAR you (the researcher) chooses the regimes

• E.g. GDP growth and choice of zt = yt−1 and threshold
τ = 0 implies:

• One regime where last period’s growth was negative, another
positive

• The researcher has imposed: regime 1 is recessionary, regime
2 is expansionary

• Markov switching estimates which observation lies in which
regime

• Maybe the classification could accord with
expansion/recession, but maybe not

• Could get any division into regimes



Example: Markov Switching in US GDP growth

• Markov switching AR(1) model (homoskedastic)

• Include an intercept in each model (called αj in tables below)

• Stata will produce:

• Estimates of intercept and AR coeff. for each regimes

• Error variance

• transition probabilities

• See table on next slide



Estimate St. Error 95% Confidence Interval

α1 1.805 0.280 1.257 2.353

ρ1 0.379 0.056 0.269 0.488

α2 14.816 2.365 10.180 19.451

ρ2 −0.091 0.223 −0.528 0.346

p11 0.987 0.009 0.948 0.997

p12 0.013 0.009 0.003 0.052

p21 0.641 0.250 0.175 0.938

p22 0.359 0.250 0.062 0.825



Example: Markov Switching in US GDP growth
• How are results interpreted?

• p11 is close to one: if in regime 1, stay there with high
probability

• p22 is much smaller (0.359): if in regime 2, tend to switch to
regime 1

• Stata (command: estat durations) will estimate durations of
each regime

• Estimated duration of regime 1 is 75.4 quarters

• Estimated duration of regime 2 is 1.6 quarters

• Regime 1 long, regime 2 very short

• Regime 2 has few observations in it so imprecise estimation
(wide confidence intervals)

• Next slide has estimates of probability each period is in regime
1 (filtered)

• Probabilities for regime 2 are one minus this
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Example: Markov Switching in US GDP growth

• Figure shows regime 1 holds almost all the time

• Regime 2 only holds for a few periods

• If you look at data (remember we are using % change since
previous quarter at annual rate):

• 7 quarters have very fast (>11%) growth rates: 1950Q1, Q2,
Q3, 1955Q1, 1971Q1, 1978Q2

• These are exactly the ones classified as regime 2

• Regime 2 = outliers of unusually fast growth



Example: Markov Switching in US GDP growth

• Note: fitted AR(1) model in regime 2 is:

yt = 14.82− 0.091yt−1

• AR coefficient is insignificant, hence regime 2 is (approx.)
saying yt = 14.82 (i.e. predicted GDP growth in regime 2 is
very high)

• This (homoskedastic) Markov switching model has been asked
to divide data in two regimes

• Answer: regime 1 is “normal growth”, regime 2 is “small
number of outliers”



Example: Markov Switching in US GDP growth

• Repeat the analysis with heteroskedastic model

• Now σ2
1 ̸= σ2

2

• All other specification choices the same

• Next table gives parameter estimates



Estimate St. Error 95% Confidence Interval

α1 2.205 0.340 1.538 2.857

ρ1 0.247 0.100 0.051 0.442

α2 2.152 0.453 1.264 3.040

ρ2 0.387 0.078 0.239 0.534

p11 0.983 0.014 0.920 0.997

p12 0.017 0.014 0.003 0.080

p21 0.014 0.012 0.003 0.068

p22 0.986 0.012 0.932 0.997

σ2
1 1.949 0.137 1.698 2.238

σ2
2 4.545 0.271 4.043 5.109



Example: Markov Switching in US GDP growth

• How are results interpreted?

• p11 and p22 now both much closer to one

• Once in a regime, tend to stay there for long time

• Estimated duration of regime 1 is 59.9 quarters

• Estimated duration of regime 2 is 70.9 quarters

• Fitted regression lines in two regimes similar to one another

• Regimes differ in error variances: σ̂2
1 = 1.949 and σ̂2

2 = 4.043

• Next slide has estimates of probability each period is in regime
1 (filtered)

• Probabilities for regime 2 are one minus this
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Example: Markov Switching in US GDP growth

• Figure shows regime 1 holds for most of time since 1983 (with
some exceptions)

• Post-1983 often called Great Moderation of the Business Cycle

• Exceptions around 2008-2009 (Financial Crisis) and 2001
(bursting of dotcom bubble)

• Regime 2 holds for these exceptions plus most of earlier part
of sample

• This (heteroskedastic) Markov switching model has been
asked to divide data in two regimes

• Its answer: regime 1 is “low volatility”, regime 2 is “high
volatility”



Example: Markov Switching in US GDP growth

• Model comparison between hetero and homo versions:

• AIC for homo is 1484.6 and for hetero is 1446.8

• BIC for homo is 1509.9 and for hetero is 1475.8

• Heteroskedastic version of model clearly preferred

• Comparing to TAR and AR, heteroskedastic Markov switching
is best

• Of all the models considered in this lecture for GDP growth
best one is:

• Markov switching model involving high and low volatility
regimes



Time-varying Parameter AR Model

• Markov switching: abrupt switches between regimes

• TVP-AR allows for constant gradual evolution of parameters

• Illustrate with TVP-AR(1)

• Same ideas work with TVP-AR(p), TVP regression or
TVP-VARs

• They are state space models

• All our state space tools (Kalman filter, etc.) can be used



Time-varying Parameter AR Model

• Measurement equation

yt = ρtyt−1 + εt

• Note t subscript on AR coefficient

• State equation
ρt+1 = ρt + ut



The TVP-AR

• Remember our general Normal Linear State Space model

• Measurement equation:

yt = Wtδ + Ztβt + εt

• State equation:
βt+1 = Dtβt + ut

• TVP-AR is special case of this with:

• Wt = 0 (although can add explanatory variables with
constant coeffs through Wt)

• Zt = yt−1

• βt = ρt
• Dt = 1



Example: Estimating the TVP-AR using GDP Growth Data
• Will not discuss econometric estimation and model

comparison for TVP-AR
• Already covered in state space model lecture
• Stata cannot estimate the TVP-AR (without further

programming)
• It only allows for Normal linear state space model where

Zt = Z (constant over time)
• With TVP-AR Zt = yt−1 (varying over time)
• Allowing for time-varying intercept in Stata possible
• That is, estimating

yt = αt + βxt + εt

can be done in Stata (can have regression terms playing role
like Wtδ in Normal linear state space model)

• But not
yt = αt + βtxt + εt

using Stata’s state space commands



Example: Time Varying CAPM

• Tsay textbook has example with CAPM with time-varying α
and β

• CAPM = capital asset pricing model

• Key model in finance (we will consider similar models in next
lecture on Factor Models)

• Here outline Tsay’s Time varying version of CAPM

• rt = excess return on asset of interest (e.g. General Motors
stock)

• rM,t = excess return on the market as a whole (e.g. S&P500
index)



Example: Time Varying CAPM

• Conventional (constant parameter) CAPM

rt = α + brM,t + εt

• b is CAPM beta

• Idea: b is measure of risk, measure of volatillity of GM stock
relative to market as a whole

• b < 1 GM is less volatile than stock market as a whole

• b > 1 GM is more volatile than stock market as a whole

• α is CAPM alpha

• Idea: α is expect to be zero, if positive it measures abnormal
returns (on risk adjusted basis) investor gets from hold GM
stock

• Excess return on portfolio/mutual fund above what an
equilibrium model like CAPM might suggest



Example: Time Varying CAPM

• Tsay suggests CAPM alpha and/or beta might be changing
over time

• E.g. There are some times mutual fund manager can enjoy
abnormal returns (α > 0) other times not (α ≈ 0)

• E.g. Financial crisis caused correlation between stock market
as a whole and individual stocks to change (β changes)

• Time-varying CAPM:

rt = αt + btrM,t + εt

αt+1 = αt + uat

bt+1 = bt + u
β
t



Example: Time Varying CAPM

• But this is a Normal linear State Space Model with:

• Wt = 0

• Zt = [1, rM,t ]

• βt =

(
αt

bt

)
• Dt =

(
1 0
0 1

)



Artificial Neural Networks

• Artificial Neural Network (ANN) very popular in machine
learning

• Less popular in time series econometrics, but growing in
popularity

• Hence, I provide brief introduction to them

• Cannot easily estimate ANN’s in Stata

• ANNs provide valid approximation a huge class of nonlinear
functions

• So if you think nonlinearity is likely, but do not know
functional form, ANN’s can be useful

• Black box method (can be hard to interpret results)

• For forecasting this may not be a problem, but for structural
economic analysis can be a problem



Artificial Neural Networks
• An example of a neural network involving dependent variable

yt
•

yt = αξt−h +
n

∑
i=1

γiG (ξt−hβi ) + εt

• ξt is some data.

• E.g. ξt = (1, yt , yt−1, .., yt−p+1) is you want p lags of the
depedendent variable to be used as predictors

• h is forecast horizon.

• E.g. typical to set h = 1 but can set h > 1 for longer forecast
horizons

• G (.) is the logistic function (other forms possible):

G (x) =
1

1+ exp(x)



Artificial Neural Networks

• General idea: yt is nonlinear function of p lags of
ξt = (1, yt , yt−1, .., yt−p+1)

• Why this particular function?

• ANN theory says highly flexible, capable of approximating
virtually anything

• So if you do not know function form, can try ANN

• ANN terminology:

• There are n ”hidden units” in the ANN

• G is ”activation function”

• ξt are ”inputs” that enter the activation function

• βi are ”connection strengths”

• γi are ”weights” that determine the ”output layer” (yt)



Artificial Neural Networks

• This is a ”univariate single layer feed-forward neural network”

• ”Univariate” since one dependent variable

• ”Single layer” since can have more layers (see next slide)

• ”feed forward” since past information (ξt−h) on right hand
side ”feeds forward” in time to predict the left hand side
variable

• Neural networks (and associated terminology) inspired by how
learning happens in the brain



Artificial Neural Networks

• Univariate single layer feed-forward neural network very flexible

• But can be made even more flexible by having multiple hidden
layers

• Double layer feed-forward neural betwork:

yt = αξt−h +
n1

∑
i=1

γiG (
n2

∑
j=1

λj ,iG (ξt−hβi )) + εt



Econometric of ANNs

• Use nonlinear least squares methods to estimate unknown
parameters in α, βi and γi for i = 1, .., n

• Use information criteria to choose n

• Evaluate information for n = 1, then n = 2, etc. and choose
best one

• If you have different possible choices for G (.) can also use
information criteria

• To decide whether single versus double layer can use
information criteria, etc.



Interpreting Results from ANNs

• When forecasting interpration of parameters is unimportant
(all you care is whether forecasts are good or not)

• Econometric techniques will provide estimates of βi and γi for
i = 1, .., n

• Hard for the economist to directly interpret their meaning

• If ξt contains only a few elements can plot fitted regression
line

• E.g. h = 1 and ξt−1 = (1, yt−1) then can plot

yt = αξt−h +
n

∑
i=1

γiG (ξt−hβi ) + εt

for various values of yt−1



Interpreting Results from ANNs

• Put yt−1 on X-axis and fitted value of yt on Y-axis

• If an AR(1) model is appropriate then such a plot should be
straight line

• With ANN such a plot could be nonlinear

• Manner in which ANN deviates from linearity could be
informative to the economist

• E.g. Does ANN plot reveal different value above/below a
threshold? This suggests TAR behaviour

• etc.



Summary

• This lecture covers range of nonlinear time series models,
including:

• Markov switching models: parameters switching abruptly
between different regimes

• TVP-AR: Gradual change over time

• Neural nets: Very flexible approach suitable when nonlinear
form is unknown


