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Introduction
You probably have had some earlier study of of time series
econometrics
Two main concepts there “regression and trends”
Distributed lag models are regressions

Autoregressive models = regression where explanatory
variables dependent variables

VAR = regressions with many equations

Even ARCH and GARCH equations for error variances are
similar to regressions

Trends = unit roots, cointegration/error correction involves
variables trending together, etc.

Thinking in terms of regressions + trends can get you pretty
far

From your earlier study you have a good set of tools to do
many things



Introduction

State space modelling is a different way of approaching time
series econometrics

Think of time series variables being driven by states

State space models can do things similar to regressions and
trends, plus much more

A few themes:
Trends as states

Parameters changing (structural breaks, regime switching,
time-variation) as states

Factor methods: Information in Big Data (100+ variables)
summarized in terms of a few states

Missing values and mixed frequencies



Readings
Ghysels and Marcellino chapter 11 offers a good intro to
general state space models
Withiin this general class, today | will lecture on structural
time series (STS) models
Tsay chapter 11 has more on STS
Classic state space books (which cover much more than we do
in this course):
Durbin, J. and Koopman, S. (2012)., Time Series Analysis by
State Space Methods (second edition).
Harvey, A. (1993) Time Series Models.
Harvey, A. (1989) Forecasting, Structural Time Series Models
and the Kalman Filter.
Prado, R. and West, M. (2010). Time Series: Modelling,
Computation and Inference.
West, M. and Harrison, J. (1997). Bayesian Forecasting and
Dynamic Models (second edition).



What Can State Space Models Do?

Models mentioned above: STS, factor models, models with
parameter change, mixed frequency models

But also many other things:
Stochastic volatility (an alternative to GARCH)

Dynamic stochastic general equilibrium (DSGE) models are
state space models

Splines (not covered in this course)

Continuous time models (not covered in this course)



Econometrics of State Space Models

An introductory econometrics course will cover standard set of
statistical tools for estimation, hypothesis testing and
forecasting

E.g. least squares methods, maximum likelihood
Programs like R allow for estimation in practice
State space models same idea (usually maximum likelihood)

Very little discussion of estimation will be given (in practice,
use R)

| want to focus on the models, their properties and using
them in practice



The Local Level (Local Trend) Model

Explain basic ideas in simplest state space model: the local
level model

For an observed variable, y;, t =1, .., T have
Ye =0t + €

eeisiid. N(0,07).
a¢ which is not observed (called a state) and follows random
walk fort =1,.., T —1:

Ntp1 = Kt + Ug

upis ii.d. N (0,032)
€+ and ug are independent of one another for all s and t.

First equation: measurement (observation) equation, second
state equation

w1 is initial condition.



Relationship to Other Models

Can write local level model as
Ay =er — &1+ U1

Note moving average (MA) structure for errors
Ay is stationary (/ (0)) whereas y; has unit root (/ (1))

Can write
t—1

oy = g + Z uj
j=1

this is a trend (stochastic trend)
local level model decomposes y;, into a trend component, «y,
and an error or irregular component, €;.
Test of whether 02 = 0 is one way of testing for a unit root.
Note: if 02 = 0 then u; = 0 and &y 1 = a; for all t (trend
vanishes, just becomes a constant intercept)
All usual univariate time series things: ARIMA modelling, unit
root testing, etc. can be done in state space framework



Relationship to Other Models

¢ is the mean (or level) of y;.

Mean is varying over time, hence terminology local level
model

Measurement equation can be interpreted as simple example
of regression model involving only an intercept.

But the intercept varies over time: time varying parameter
model

Easy to add explanatory variables to create regression model
with time varying intercept

Extensions of local level model used to investigate parameter
change in various contexts.



Example: Trend Inflation
Central bankers often interested in measures of trend
(underlying) inflation
Decompose observed inflation (7t;:) into permanent (7t}) and
transitory (c;) components:

Ty = 7'[;‘ + ¢t
7ty is underlying inflation, defined through the properties:

Ei (mesn) — Ee(miyp)
E: (ct4n) — 0as h— oo.

Do not observe 77, but effectiveness of monetary policy can
depend crucially on it

Central bankers distinguish between anchored, contained and
unmoored inflation expectations

Different econometric models developed based on these
concepts



Anchored inflation expectations

Assume a credible inflation target exists, 7T

Many researchers model underlying inflation as:
7'(:( :ﬁ(l —9) +97T;.<_1+Ut

ut is a stationary residual and |6] < 1.

Can be shown that trend inflation will be pulled back to the
inflation target

This model has anchored inflation expectations

Inflation expectations perfectly anchored if 6 = 0



Unmoored inflation expectations

Many (e.g. Stock and Watson, 2007, JMCB) model
underlying inflation as a random walk:

* *
TT; = TTy_q1 + Ut

A shock (ut) hits trend inflation it has permanent effect

This is property of random walk

t
=Yy
=

Each past shock (u; for j =1, .., t) appears in formula
(permanent effect)

Unmoored inflation expectations



How Does This Relate to State Space Models?

Trend inflation, 71}, is the state (a;)
Inflation, y;, is observed
Unmoored model of Stock and Watson is the local level model

Anchored inflation expectations model is a slight
generalization

One variant might be to have state equation:
Qt+1 = C+ poe + Ut

where c is constant and p a coefficient to be estimated

Key point: All state space models



Example: US Inflation

Next figure graphs US CPI inflation
Quarterly changes made into annual rate
If P;is CPIl in quarter t

4001In (722,
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Example: US Inflation (continued)

Next figure graphs US CPI inflation against estimate of «;
using local level model

Unmoored inflation expectations

Following figure does same with anchored inflation
expectations model

One after that takes difference between two estimates

Note: central bank researchers usually use models more
sophisticated than this (stochastic volatility)

Estimates of trend inflation track actual inflation too closely

But maybe that is what you would expect if unmoored or
poorly anchored
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Econometric Estimation of Local Level Model

Remember form of local level model is:
Ye =0+ &

eeis iid. N(0,02).
®+ is the state and follows

Qpyp1 = K+ Ut

ug is i.i.d. N (0,02)
Model has two parameters to estimate: ¢2 and o2
And want estimates of the states

Important point for empirical researcher: Computer software
packages such as R do this



Filtering versus Smoothing in the Local Level Model

® Notation: superscripts for all observations up to a specific
time

® Eg. y’ = (y1,...y7) is all observations in the sample

® ot = (ay,..,a;) is all states up to the current period (t)

¢ Filtering = using y*

® E (at|y") is the filtered estimate of the state

e Notation: “|" asin “|y'” means conditional on or given

® £ (yrr1]y?) is estimate of y;11 (unknown at time t)

® Used for real time forecasting

® Smoothing = using y "

® E (a;|y") is smoothed estimate of state

® E.g. estimate of trend inflation using the full sample of data



The Kalman Filter

I will not derive or state exact formulae, just the main ideas
Formulae below depend on ¢ and o2, for now assume known

Can prove

lxt|)/t_1 ~ N(at|t—1:Pt|t—1)
“t|yt ~ N(at|tr’Dt|t)

First called prediction equation

Second called updating equation

Kalman filter involves simple formulae linking

At|t—1 'Dt\tflv t|ts 'Dt\t

Also formula for predictive density p (y:+1|y*) which can be
used for real time forecasting

Also formula for likelihood function (used for maximum
likelihood estimation)



Kalman Filter Recursions

Start with initial condition, a;j;, Py|; (to be discussed)
Calculate ay|;, Py using Kalman filtering formulae

Calculate ayp, Py

Calculate a1, Pyt—1
Calculate ag¢, Py

etc.



Kalman Filter Recursions

Each calculation on previous slide only depended on the last
one

New observation added, only need to update using this

Simplifies computation: no need for manipulations involving
T x T matrices

At every point in time get filtered estimate of state, predictive
density, etc.

Run the Kalman filter from t =1, .., T



Prediction Error Decomposition

Kalman filter recursions above for states (e.g. st and ay; g
estimates of states given different information sets)

But also same thing for forecasts: y;;_;
Note: nothing for y,|, since y;; = y: (you already observe it)
Can show
yely® ™t ~ N (yee—1, Fe)

where y;;_; and F; have simple recursive formula (“one
observation at a time")
Prediction error:

Ve = Yt = Yijt-1
Can show likelihood function depends only on v; and F;

Called prediction error decomposition



Initializing the Kalman Filter

Need to start Kalman filter with initial condition, ay;, Py
Standard treatments exist (R does this automatically)

But basic idea is to assume
wy ~ N (31\1, Pm)

To describe ideas, work with generalization of local level model
Qt+1 = C+ poe + Ut

This implies

ny = Cc+pag+
= c+p(c+pa_q+u)+u
etc.



Initializing the Kalman Filter

Can show, if |p] < 1:

Ew) = =
2
var (ng) = 1i”p2

Setting a;; = E (a1) and Pyj; = var (a1) is called the

stationary initialization

But only works if |p| < 1 (or, more generally, if state equation

is stationary)

For nonstationary state equations (like local level model)

“diffuse initialization” done

Amounts to letting Py;; — co and can show ay|; will not

appear in formula



Maximum Likelihood

Preceding material discussed estimating states and forecasting
assuming ¢2 and ¢2, known

How do we estimate them?
Maximum likelihood using prediction error decomposition

There are slightly different variants based on initialization of
Kalman filter



Model Selection and Hypothesis Testing

Likelihood based testing and model selection can be done

Tests of whether a parameter is significantly different from
zero or likelihood ratio tests

Information criteria such as AIC and BIC can be used

Information criteria described on pages 48-49 of Tsay
textbook

Two state space models with same y; choose one with lower
AIC or BIC



Digression: Information Criteria

Information criteria are a popular method of model selection

Can be used to choose between any models (not just state
space models)

Let L(y;6) be the likelihood function for a model which
depends on parameters 6

Let p be the number of parameters in 6

In the local level model 6 will be 02 and ¢ and, thus, p = 2



Digression: Information Criteria

Information criteria typically have the form:

IC(6) = —2In [L(y:0)] + g (p) (1)

g (p) is an increasing function of p.

Evaluate /C (0) at the maximum likelihood value for 6 for
every model under consideration

Choose the model with the lowest IC
Information criteria differ in the choice of of g (p).

This is a function which rewards parsimony (penalizes models
with excessive parameters)



Digression: Information Criteria

There are many ICs

Two of the most popular ones are Bayesian Information
Criterion (or BIC) and Akaike's Information Criterion (or AIC)

BIC is sometimes called Schwarz Criterion
BIC sets g (p) = pIn(T)
AIC sets g (p) = 2p



Example: US Inflation (continued)

[llustrate using US CPI Inflation example
Estimate local level model (parameters ¢2 and 02)

Table provided for every parameter being estimated along with
t-stat and P-value for whether parameter equals zero

For 02: z= 4.22 and P>|z|=0.000
Strong evidence that ¢ is not zero 0
Thus «a; is varying over time (non-stationary)

Thus, unit root is present



Example: US Inflation (continued)

Is local level model better than stationary model?
1 = C+ pae + up

Local level model gives BIC of 1238.123
Stationary model gives BIC of 1235.538

Choose stationary model



State Smoothing

Smoothing uses full sample, y "
Suitable for estimation (e.g. estimating trend inflation)

Standard recursive formulae exist with same “update one
observation at a time”

Can prove

‘Xt|yT ~ N (at\T: Pt|T>
First run Kalman filter from t =1, .., T
Then state smoother fromt =T, ..,1

Set of simple recursive formulae for a;r and Pyt



Missing Values

What if you have missing observations?

Kalman filter and state smoother can handle this

Kalman filter recursive calculation of a;; 1, Pjs—1. 3¢, Pyt
If observation is missing at time T, can show no updating
occurs

ar|r = drjr-1 and 'DT\T = Frjt—1

Simple way of dealing with missing values which occur in
many data sets



Structural Time Series Models

Structural Time Series (STS) models popularized by Andrew
Harvey

Also called Unobserved Components Models

Local level model is one example

Many more are popular

Which one you use depends on the properties of the data set

| will give a few more examples



Local Linear Trend Model

Same measurement equation as local level model:
Ye =0+ &
And a; still interpreted as a trend, but
Kpy1 = &t + Bt + U1e
with additional state equation:
,Bt-‘rl - ,Bt + upt

In computer lab | ask you to estimate and plots the two states
and gain more understanding

Trend has its own trend: 1(2)
Ay = Br—1+ €t —€r—1+ U1t-1

but B¢—1 still has unit root



Adding a Cycle

The business cycle affects many macro variables

Macro variables might have trend, irregular component and a
cyclical component

Simple to add cycle to local level model:
Ye =0+ Pr + &

a+ and €; same as for local level model
eeisiid. N (0,072).
«+ is a state and follows

Npp1 = Kt + Ug

ug is ii.d. N(0,02)



Adding a Cycle

New state is ¢; used to estimate the cycle
Need to use some trigonometry to model cycle

Do not worry if unfamiliar: key thing is that sines and cosines
are functions that can easily be evaluated

Cycles are characterized by their frequency (e.g. how often
recessions occur) and amplitude (e.g. how deep recessions are)

Can be modeled as
¢r+1 = acos (At) + bsin (At)

where t =1, .., T is time



Adding a Cycle

This state is a deterministic function of time (but still a state
space model)

a, b and (usually) A are parameters which can be estimated

It is common to allow the cycle to change over time (e.g.
business cycles used to happen more frequency in the past
then recently)

This can also be done in a state space framework



Adding Seasonality

Many macro variables exhibit a seasonal pattern
E.g. retail sales peaks around Christmas
May want to put in seasonal pattern to an STS model

Note: data sometimes comes already seasonally adjusted then
no need to do this

Many ways of modelling seasonality: seasonal dummies, sines
and cosines, seasonal differencing

Here will illustrate one STS approach with quarterly data that
works well with many data sets



Adding Seasonality

STS with trend, irregular component and seasonality is:
Ye = Q&+ Ye T €

v+ is seasonal effect

ay is trend, g irregular component

Can add cycle if you want

at is the level (mean, intercept) of the series
v+ will be added to this



Adding Seasonality

Let v, Vi—1, Vt—2, ¥+—3 be variable in four quarters in a year
Mean of variable in last quarter is a; + ¢

Mean of variable in second last quarter is a1 + Yt—1

etc.

To keep interpretation a; as the level of series restrict:

Ye+ Y1+ Y2+ 7:t-3=0

Seasonal effects constrained to sum to zero over the year
¢ is still the trend/average mean, seasonal effects are
deviations from this

Eg Yt = Yt—1 = —1 and Yt—2 = Yt-3 = 1

First 2 quarters of year are 1 above trend and last two
quarters of year are 1 below trend



Adding Seasonality

But perhaps this seasonal pattern evolves over time so

Yt + Ye-1+ V-2 + Y3 = Wy

where w; is i.i.d. N (O,UEV)

Equivalently

Yt = —Yt-1— Yt—2 — Yt-3 t Wt

This can be put in state space form

State space estimation methods can be used



Adding Seasonality

Let v¢, Yt—1, Yt—2 be three different states (7y;_3 is one minus
the sum of these)

Define a vector of states: 0; = (a¢, ¥, Vi1, 'yt_g)/

Measurement equation:
Yt = (1 1 00)9t+£t

State equation

K1 1 1 0 0 Xt
Yer1 0 -1 -1 -1 Ye
Ber1 = = n
t1 Ve 0 1 0 Y1
Ye—1 0 1 0 Yt—2



Where

Adding Seasonality

Orr1 = CO: + vz

1 1 0 0

0 -1 -1 -1
¢= 0 1 0 0

0 0 1 0

C is a matrix of constraints in state equation

(1100) are constraints in measurement equation



Adding Seasonality

Key point: STS with seasonality is a state space model and
can be estimated as such

Some of the state equations look odd
Last two are simply identities with no error

But this is not a problem for the Kalman filter and state space
methods



Another Example: the ARMA(2,2) Model

ARMA models are a popular class of time series models

Here we will show how ARMA(2,2) can be written as a state
space model

Similar derivations hold for ARMA(p,q)
ARMA(2,2) model is

Yt = aiyt-1+asyt2+ 1t + bijt—1+ bonjr 2



Another Example: the ARMA(2,2) Model

® Now consider a state space model with 4 states with state
equations

X1t ai a 1 0 X1t—1 1

. 0ot o 1 0 0 O 2 t—1 0
“E e | Tl o 0 0 1| ames | T B
X4t 0 0 0 O X4 t—1 b2

® And measurement equation

Yt = (1 00 0) e
e Will show this state space model is equivalent to ARMA(2,2)



Another Example: the ARMA(2,2) Model

® First state equation is
N1t = ail1,—1+ a1+ &3¢-1+ Yt

® Substitute in formulae for ap +—1 and a3 ;3 from second and
third state equations gives

X1t = a1l1,t—1 + ax1,t—2 + &a 2+ b1 + 1t

® The fourth state equation implies a4 +—> = bo#j+—2 and, thus,

X1t = aii1,t—1 + a&1,t—2 + baffe—2 + binje—1 + 1+



Another Example: the ARMA(2,2) Model

® But the measurement equation says a1 + = y; and thus,
yie = ayie-1+ ayre—2 + batje—2 + binje—1 + 1t

® This is the original ARMA(2,2) model

® In general, any ARMA(p,q) model can be written as a state
space model



The Normal Linear State Space Model
All the models above are examples of Normal Linear State
Space Models
Measurement equation:
ye = Wid + Z: Bt + €
State equation:
Bt+1 = DiBt + u;

® y; contains dependent variable(s)
® Note: so far models all have y; being one variable (e.g.

inflation)

® But y; can be a vector M x 1 vector
® Usual for macroeconomics: VARs have M variables, DSGE

models involve M variables, Dynamic Factor Model with many
variables

Big Data applications often have M being large (e.g. 100 or
more)

Bt is a K x 1 vector of states



The Normal Linear State Space Model

Errors in measurement and state equations both can be
vectors

Need error covariance matrices (not just variances)

Also may want to have these varying over time (e.g. GARCH
effects)

Hence, this very general model allows for:

er ~ N(0,%)

ur ~ N (0, Q).

€+ and u; are independent of each other and over time



The Normal Linear State Space Model

The remaining terms are called system matrices
We, Zi, L, Q¢, Dy and 6

Either known or want to estimate them

W; is M X pg matrix

Z: is M x K matrix

D; is a K x K matrix



The Normal Linear State Space Model: Examples

® You will usually work with special cases of this very general
modelling framework

® Warning: Some computer packages requires many system
matrices to be constant:

L Zt:Z,Dt:D,Zt:Z,Qt:Q
e All of the STS models discussed so far had W; = 0

® |f W; contains explanatory variables, you combine regression
(W:6) with state space model (Z;f¢) parts into one model

® Can also add explanatory variables in your state equation
® |ocal level model: Z; = Dy =1, ¥t = (782 and Q; = (73

® Note: random walk behaviour of trend can be relaxed by
setting Dy = p and estimating p



The Normal Linear State Space Model: Examples

® STS trend plus seasonality model had Z; = 02,
Z,=(1100)

o O O
o =
= O
o O

2
o O O O
o O O O



DSGE Models as State Space Models

DSGE = Dynamic, stochastic general equilibrium models
popular in modern macroeconomics and commonly used in
policy circles (e.g. central banks).

| will not explain the macro theory, other than to note they
are:

Derived from microeconomic principles (based on agents and
firms decision problems), dynamic (studying how economy
evolves over time) and general equilibrium.

Solution (using linear approximation methods) is a linear state
space model

Note: recent work with second order approximations yields
nonlinear state space model

Nonlinear state space models hot field now



Estimation Strategy for DSGE

Most linearized DSGE models written as:
To(0) st =T1(0) Et (Se41) +T2(0) st-1+T3(0) ur

st is vector containing both observed variables (e.g. output
growth, inflation, interest rates) and unobserved variables
(e.g. technology shocks, monetary policy shocks).

Note, theory usually written in terms of s; as deviation of
variable from steady state (an issue | will ignore here to keep
exposition simple)

0 are structural parameters (e.g. parameters for steady states,
tastes, technology, policy and driving the exogenous shocks).
uy are structural shocks (N (0, /)).

I'j (0) are often highly nonlinear functions of 6



Solving the DSGE Model

Methods exist to solve linear rational expectations models
such as DSGE models

If unique equilibrium exists can be written as:
st =A(0)si—1+ B(0) uy

Looks like a VAR, but....
Some elements of s; unobserved
Interpret this as our state equation

and highly nonlinear restrictions involved in A (0) and B (0)



DSGE Model as a State Space Model

® | et y; be elements of s; which are observed.

® Measurement equation:
yr = Cst

where C is matrix which picks out observed elements of s;

® This is a restricted version of a state space model



DSGE Model as a State Space Model

In terms of notation for Normal linear state space model we
have:

States: B = st

Restrictions on how states impact on the data: Z; = C
Restrictions in state equation: D; = A (6)

Error covariance in state equation: Q; = B (8) B ()’
Error covariance in measurement equation: 2; =0

Note: Standard software packages cannot handle nonlinearity
in 8 so must use specialized software

E.g. DYNARE (http://www.dynare.org/)



Estimation of Normal Linear State Space Models

| previously discussed estimation for local level model

® Exactly the same idea for Normal Linear State Space model
but more general formulae

® Kalman filter and state smoother to estimate states

® Prediction error decomposition used to calculate likelihood
function

® |ikelihood function: use for MLE of any unknown parameters
in Wt’r Zt, Ztv Qtr Dt and 0

® |ikelihood based methods for testing or model selection
(information criteria) can be done



Nonlinear, Non-normal State Space Models

Techniques covered in this lecture (e.g. Kalman filter) require
linearity and Normal errors

Some interesting models are nonlinear and/or non-Normal

E.g. Normal errors sometimes inappropriate (e.g. if variable is
a count, etc.)

E.g. DSGE models which are not linearized

Much recent research developing econometric methods for
nonlinear state space models

One important nonlinear model is stochastic volatility



Stochastic Volatility

In finance, popular alternative to ARCH and GARCH for
modelling time-varying volatility

Stochastic volatility model:

-
Yt = exp > €t

hev1 = he +1¢

ecisiid. N(0,1) and 5, is iid. N (o,ag). e; and 7 are
independent.
h¢ is log of the variance of y; (log volatility)

This is state space model with states being h;, but
measurement equation is not a linear function of h;



Stochastic Volatility
Exact maximum likelihood estimation of this nonlinear state
space model can be hard (Bayesian estimation is common)
But approximate estimation can be done easily
Can use transformation to make approximately Normal linear
state space model
Approximation can be poor (esp. in finance)
Square and log the measurement equation:

yi = he +¢€;

where y; = In (y?) and €} = In (€2).

Now the measurement equation is linear so maybe we can use
algorithm for Normal linear state space model?

No, since error is no longer Normal (i.e. € = In (¢2))

But if you approximate the distribution of € by Normal can
use Kalman filter, etc.

Same as local level model but with dependent variable y;



Summary

A set of econometric tools exist for estimating and forecasting
with state space models

Kalman filter, state smoother, etc.

Many models of interest can be put in a state space
framework including:

Almost everything you covered in earlier study of time series
econometrics plus:

Structural Time Series models

DSGE models

Time-varying parameter models (future lecture)
Factor models (future lecture)

Stochastic volatility (alternative to GARCH)



