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Introduction
• You probably have had some earlier study of of time series

econometrics

• Two main concepts there “regression and trends”

• Distributed lag models are regressions

• Autoregressive models = regression where explanatory
variables dependent variables

• VAR = regressions with many equations

• Even ARCH and GARCH equations for error variances are
similar to regressions

• Trends = unit roots, cointegration/error correction involves
variables trending together, etc.

• Thinking in terms of regressions + trends can get you pretty
far

• From your earlier study you have a good set of tools to do
many things



Introduction

• State space modelling is a different way of approaching time
series econometrics

• Think of time series variables being driven by states

• State space models can do things similar to regressions and
trends, plus much more

• A few themes:

• Trends as states

• Parameters changing (structural breaks, regime switching,
time-variation) as states

• Factor methods: Information in Big Data (100+ variables)
summarized in terms of a few states

• Missing values and mixed frequencies



Readings
• Ghysels and Marcellino chapter 11 offers a good intro to

general state space models
• Withiin this general class, today I will lecture on structural

time series (STS) models
• Tsay chapter 11 has more on STS
• Classic state space books (which cover much more than we do

in this course):
• Durbin, J. and Koopman, S. (2012)., Time Series Analysis by

State Space Methods (second edition).
• Harvey, A. (1993) Time Series Models.
• Harvey, A. (1989) Forecasting, Structural Time Series Models

and the Kalman Filter.
• Prado, R. and West, M. (2010). Time Series: Modelling,

Computation and Inference.
• West, M. and Harrison, J. (1997). Bayesian Forecasting and

Dynamic Models (second edition).



What Can State Space Models Do?

• Models mentioned above: STS, factor models, models with
parameter change, mixed frequency models

• But also many other things:

• Stochastic volatility (an alternative to GARCH)

• Dynamic stochastic general equilibrium (DSGE) models are
state space models

• Splines (not covered in this course)

• Continuous time models (not covered in this course)



Econometrics of State Space Models

• An introductory econometrics course will cover standard set of
statistical tools for estimation, hypothesis testing and
forecasting

• E.g. least squares methods, maximum likelihood

• Programs like R allow for estimation in practice

• State space models same idea (usually maximum likelihood)

• Very little discussion of estimation will be given (in practice,
use R)

• I want to focus on the models, their properties and using
them in practice



The Local Level (Local Trend) Model
• Explain basic ideas in simplest state space model: the local

level model

• For an observed variable, yt , t = 1, ..,T have

yt = αt + εt

• εt is i.i.d. N
(
0, σ2

ε

)
.

• αt which is not observed (called a state) and follows random
walk for t = 1, ..,T − 1:

αt+1 = αt + ut

• ut is i.i.d. N
(
0, σ2

u

)
• εt and us are independent of one another for all s and t.

• First equation: measurement (observation) equation, second
state equation

• α1 is initial condition.



Relationship to Other Models
• Can write local level model as

∆yt = εt − εt−1 + ut−1

• Note moving average (MA) structure for errors
• ∆yt is stationary (I (0)) whereas yt has unit root (I (1))
• Can write

αt = α1 +
t−1

∑
j=1

uj

• this is a trend (stochastic trend)
• local level model decomposes yt , into a trend component, αt ,

and an error or irregular component, εt .
• Test of whether σ2

u = 0 is one way of testing for a unit root.
• Note: if σ2

u = 0 then ut = 0 and αt+1 = αt for all t (trend
vanishes, just becomes a constant intercept)

• All usual univariate time series things: ARIMA modelling, unit
root testing, etc. can be done in state space framework



Relationship to Other Models

• αt is the mean (or level) of yt .

• Mean is varying over time, hence terminology local level
model

• Measurement equation can be interpreted as simple example
of regression model involving only an intercept.

• But the intercept varies over time: time varying parameter
model

• Easy to add explanatory variables to create regression model
with time varying intercept

• Extensions of local level model used to investigate parameter
change in various contexts.



Example: Trend Inflation
• Central bankers often interested in measures of trend

(underlying) inflation
• Decompose observed inflation (πt) into permanent (π∗

t ) and
transitory (ct) components:

πt = π∗
t + ct .

• π∗
t is underlying inflation, defined through the properties:

Et (πt+h) → Et (π
∗
t+h)

Et (ct+h) → 0 as h → ∞.

• Do not observe π∗
t , but effectiveness of monetary policy can

depend crucially on it
• Central bankers distinguish between anchored, contained and

unmoored inflation expectations
• Different econometric models developed based on these

concepts



Anchored inflation expectations

• Assume a credible inflation target exists, π

• Many researchers model underlying inflation as:

π∗
t = π (1− θ) + θπ∗

t−1 + ut

• ut is a stationary residual and |θ| < 1.

• Can be shown that trend inflation will be pulled back to the
inflation target

• This model has anchored inflation expectations

• Inflation expectations perfectly anchored if θ = 0



Unmoored inflation expectations

• Many (e.g. Stock and Watson, 2007, JMCB) model
underlying inflation as a random walk:

π∗
t = π∗

t−1 + ut .

• A shock (ut) hits trend inflation it has permanent effect

• This is property of random walk

•

π∗
t =

t

∑
j=1

uj

• Each past shock (uj for j = 1, .., t) appears in formula
(permanent effect)

• Unmoored inflation expectations



How Does This Relate to State Space Models?

• Trend inflation, π∗
t , is the state (αt)

• Inflation, yt , is observed

• Unmoored model of Stock and Watson is the local level model

• Anchored inflation expectations model is a slight
generalization

• One variant might be to have state equation:

αt+1 = c + ραt + ut

where c is constant and ρ a coefficient to be estimated

• Key point: All state space models



Example: US Inflation

• Next figure graphs US CPI inflation

• Quarterly changes made into annual rate

• If Pt is CPI in quarter t

• 400 ln
(

Pt
Pt−1

)
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Example: US Inflation (continued)

• Next figure graphs US CPI inflation against estimate of αt

using local level model

• Unmoored inflation expectations

• Following figure does same with anchored inflation
expectations model

• One after that takes difference between two estimates

• Note: central bank researchers usually use models more
sophisticated than this (stochastic volatility)

• Estimates of trend inflation track actual inflation too closely

• But maybe that is what you would expect if unmoored or
poorly anchored
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Econometric Estimation of Local Level Model

• Remember form of local level model is:

yt = αt + εt

• εt is i.i.d. N
(
0, σ2

ε

)
.

• αt is the state and follows

αt+1 = αt + ut

• ut is i.i.d. N
(
0, σ2

u

)
• Model has two parameters to estimate: σ2

ε and σ2
u

• And want estimates of the states

• Important point for empirical researcher: Computer software
packages such as R do this



Filtering versus Smoothing in the Local Level Model

• Notation: superscripts for all observations up to a specific
time

• E.g. yT = (y1, .., yT )
′ is all observations in the sample

• αt = (α1, .., αt)
′ is all states up to the current period (t)

• Filtering = using y t

• E (αt |y t) is the filtered estimate of the state

• Notation: “|” as in “|y t” means conditional on or given

• E (yt+1|y t) is estimate of yt+1 (unknown at time t)

• Used for real time forecasting

• Smoothing = using yT

• E
(
αt |yT

)
is smoothed estimate of state

• E.g. estimate of trend inflation using the full sample of data



The Kalman Filter

• I will not derive or state exact formulae, just the main ideas

• Formulae below depend on σ2
ε and σ2

u , for now assume known

• Can prove

αt |y t−1 ∼ N
(
at|t−1,Pt|t−1

)
αt |y t ∼ N

(
at|t ,Pt|t

)
• First called prediction equation

• Second called updating equation

• Kalman filter involves simple formulae linking
at|t−1,Pt|t−1, at|t ,Pt|t

• Also formula for predictive density p (yt+1|y t) which can be
used for real time forecasting

• Also formula for likelihood function (used for maximum
likelihood estimation)



Kalman Filter Recursions

• Start with initial condition, a1|1,P1|1 (to be discussed)

• Calculate a2|1, P2|1 using Kalman filtering formulae

• Calculate a2|2, P2|2
• ...

• Calculate at|t−1, Pt|t−1

• Calculate at|t , Pt|t
• etc.



Kalman Filter Recursions

• Each calculation on previous slide only depended on the last
one

• New observation added, only need to update using this

• Simplifies computation: no need for manipulations involving
T × T matrices

• At every point in time get filtered estimate of state, predictive
density, etc.

• Run the Kalman filter from t = 1, ..,T



Prediction Error Decomposition

• Kalman filter recursions above for states (e.g. at|t and at|t−1

estimates of states given different information sets)

• But also same thing for forecasts: yt|t−1

• Note: nothing for yt|t since yt|t = yt (you already observe it)

• Can show
yt |y t−1 ∼ N

(
yt|t−1,Ft

)
• where yt|t−1 and Ft have simple recursive formula (“one

observation at a time”)

• Prediction error:
vt = yt − yt|t−1

• Can show likelihood function depends only on vt and Ft
• Called prediction error decomposition



Initializing the Kalman Filter
• Need to start Kalman filter with initial condition, a1|1,P1|1
• Standard treatments exist (R does this automatically)

• But basic idea is to assume

α1 ∼ N
(
a1|1,P1|1

)
• To describe ideas, work with generalization of local level model

αt+1 = c + ραt + ut

• This implies

α1 = c + ρα0 + u1

= c + ρ (c + ρα−1 + u0) + u1

= etc .



Initializing the Kalman Filter

• Can show, if |ρ| < 1:

E (α1) =
c

(1− ρ)

var (α1) =
σ2
u

1− ρ2

• Setting a1|1 = E (α1) and P1|1 = var (α1) is called the
stationary initialization

• But only works if |ρ| < 1 (or, more generally, if state equation
is stationary)

• For nonstationary state equations (like local level model)
“diffuse initialization” done

• Amounts to letting P1|1 → ∞ and can show a1|1 will not
appear in formula



Maximum Likelihood

• Preceding material discussed estimating states and forecasting
assuming σ2

ε and σ2
u , known

• How do we estimate them?

• Maximum likelihood using prediction error decomposition

• There are slightly different variants based on initialization of
Kalman filter



Model Selection and Hypothesis Testing

• Likelihood based testing and model selection can be done

• Tests of whether a parameter is significantly different from
zero or likelihood ratio tests

• Information criteria such as AIC and BIC can be used

• Information criteria described on pages 48-49 of Tsay
textbook

• Two state space models with same yt choose one with lower
AIC or BIC



Digression: Information Criteria

• Information criteria are a popular method of model selection

• Can be used to choose between any models (not just state
space models)

• Let L(y ; θ) be the likelihood function for a model which
depends on parameters θ

• Let p be the number of parameters in θ

• In the local level model θ will be σ2
ε and σ2

u and, thus, p = 2



Digression: Information Criteria

• Information criteria typically have the form:

IC (θ) = −2 ln [L(y ; θ)] + g (p) (1)

• g (p) is an increasing function of p.

• Evaluate IC (θ) at the maximum likelihood value for θ for
every model under consideration

• Choose the model with the lowest IC

• Information criteria differ in the choice of of g (p).

• This is a function which rewards parsimony (penalizes models
with excessive parameters)



Digression: Information Criteria

• There are many ICs

• Two of the most popular ones are Bayesian Information
Criterion (or BIC) and Akaike’s Information Criterion (or AIC)

• BIC is sometimes called Schwarz Criterion

• BIC sets g (p) = p ln (T )

• AIC sets g (p) = 2p



Example: US Inflation (continued)

• Illustrate using US CPI Inflation example

• Estimate local level model (parameters σ2
ε and σ2

u)

• Table provided for every parameter being estimated along with
t-stat and P-value for whether parameter equals zero

• For σ2
u : z= 4.22 and P>|z|=0.000

• Strong evidence that σ2
u is not zero 0

• Thus αt is varying over time (non-stationary)

• Thus, unit root is present



Example: US Inflation (continued)

• Is local level model better than stationary model?

αt+1 = c + ραt + ut

• Local level model gives BIC of 1238.123

• Stationary model gives BIC of 1235.538

• Choose stationary model



State Smoothing

• Smoothing uses full sample, yT

• Suitable for estimation (e.g. estimating trend inflation)

• Standard recursive formulae exist with same “update one
observation at a time”

• Can prove
αt |yT ∼ N

(
at|T ,Pt|T

)
• First run Kalman filter from t = 1, ..,T

• Then state smoother from t = T , .., 1

• Set of simple recursive formulae for at|T and Pt|T



Missing Values

• What if you have missing observations?

• Kalman filter and state smoother can handle this

• Kalman filter recursive calculation of at|t−1,Pt|t−1, at|t ,Pt|t
• If observation is missing at time τ, can show no updating

occurs

• aτ|τ = aτ|τ−1 and Pτ|τ = Pτ|τ−1

• Simple way of dealing with missing values which occur in
many data sets



Structural Time Series Models

• Structural Time Series (STS) models popularized by Andrew
Harvey

• Also called Unobserved Components Models

• Local level model is one example

• Many more are popular

• Which one you use depends on the properties of the data set

• I will give a few more examples



Local Linear Trend Model
• Same measurement equation as local level model:

yt = αt + εt

• And αt still interpreted as a trend, but

αt+1 = αt + βt + u1t

with additional state equation:

βt+1 = βt + u2t

• In computer lab I ask you to estimate and plots the two states
and gain more understanding

• Trend has its own trend: I(2)

∆yt = βt−1 + εt − εt−1 + u1,t−1

but βt−1 still has unit root



Adding a Cycle

• The business cycle affects many macro variables

• Macro variables might have trend, irregular component and a
cyclical component

• Simple to add cycle to local level model:

yt = αt + ϕt + εt

• αt and εt same as for local level model

• εt is i.i.d. N
(
0, σ2

ε

)
.

• αt is a state and follows

αt+1 = αt + ut

• ut is i.i.d. N
(
0, σ2

u

)



Adding a Cycle

• New state is ϕt used to estimate the cycle

• Need to use some trigonometry to model cycle

• Do not worry if unfamiliar: key thing is that sines and cosines
are functions that can easily be evaluated

• Cycles are characterized by their frequency (e.g. how often
recessions occur) and amplitude (e.g. how deep recessions are)

• Can be modeled as

ϕt+1 = a cos (λt) + b sin (λt)

where t = 1, ..,T is time



Adding a Cycle

• This state is a deterministic function of time (but still a state
space model)

• a, b and (usually) λ are parameters which can be estimated

• It is common to allow the cycle to change over time (e.g.
business cycles used to happen more frequency in the past
then recently)

• This can also be done in a state space framework



Adding Seasonality

• Many macro variables exhibit a seasonal pattern

• E.g. retail sales peaks around Christmas

• May want to put in seasonal pattern to an STS model

• Note: data sometimes comes already seasonally adjusted then
no need to do this

• Many ways of modelling seasonality: seasonal dummies, sines
and cosines, seasonal differencing

• Here will illustrate one STS approach with quarterly data that
works well with many data sets



Adding Seasonality

• STS with trend, irregular component and seasonality is:

yt = αt + γt + εt

• γt is seasonal effect

• αt is trend, εt irregular component

• Can add cycle if you want

• αt is the level (mean, intercept) of the series

• γt will be added to this



Adding Seasonality

• Let yt , yt−1, yt−2, yt−3 be variable in four quarters in a year

• Mean of variable in last quarter is αt + γt

• Mean of variable in second last quarter is αt−1 + γt−1

• etc.

• To keep interpretation αt as the level of series restrict:

γt + γt−1 + γt−2 + γt−3 = 0

• Seasonal effects constrained to sum to zero over the year

• αt is still the trend/average mean, seasonal effects are
deviations from this

• E.g. γt = γt−1 = −1 and γt−2 = γt−3 = 1

• First 2 quarters of year are 1 above trend and last two
quarters of year are 1 below trend



Adding Seasonality

• But perhaps this seasonal pattern evolves over time so

γt + γt−1 + γt−2 + γt−3 = wt

where wt is i.i.d. N
(
0, σ2

w

)
• Equivalently

γt = −γt−1 − γt−2 − γt−3 + wt

• This can be put in state space form

• State space estimation methods can be used



Adding Seasonality

• Let γt ,γt−1,γt−2 be three different states (γt−3 is one minus
the sum of these)

• Define a vector of states: θt = (αt ,γt ,γt−1,γt−2)
′

• Measurement equation:

yt = (1 1 0 0) θt + εt

• State equation

θt+1 =


αt+1

γt+1

γt

γt−1

 =


1 1 0 0
0 −1 −1 −1
0 1 0 0
0 0 1 0




αt

γt

γt−1

γt−2

+


ut
wt

0
0





Adding Seasonality

• Or
θt+1 = Cθt + vt

• Where

C =


1 1 0 0
0 −1 −1 −1
0 1 0 0
0 0 1 0


• C is a matrix of constraints in state equation

• (1 1 0 0) are constraints in measurement equation



Adding Seasonality

• Key point: STS with seasonality is a state space model and
can be estimated as such

• Some of the state equations look odd

• Last two are simply identities with no error

• But this is not a problem for the Kalman filter and state space
methods



Another Example: the ARMA(2,2) Model

• ARMA models are a popular class of time series models

• Here we will show how ARMA(2,2) can be written as a state
space model

• Similar derivations hold for ARMA(p,q)

• ARMA(2,2) model is

yt = a1yt−1 + a2yt−2 + ηt + b1ηt−1 + b2ηt−2



Another Example: the ARMA(2,2) Model

• Now consider a state space model with 4 states with state
equations

αt =


α1,t

α2,t

α3,t

α4,t

 =


a1 a2 1 0
1 0 0 0
0 0 0 1
0 0 0 0




α1,t−1

α2,t−1

α3,t−1

α4,t−1

+


1
0
b1
b2

 ηt

• And measurement equation

yt = (1 0 0 0) αt

• Will show this state space model is equivalent to ARMA(2,2)



Another Example: the ARMA(2,2) Model

• First state equation is

α1,t = a1α1,t−1 + a2α2,t−1 + α3,t−1 + ηt

• Substitute in formulae for α2,t−1 and α3,t−1 from second and
third state equations gives

α1,t = a1α1,t−1 + a2α1,t−2 + α4,t−2 + b1ηt−1 + ηt

• The fourth state equation implies α4,t−2 = b2ηt−2 and, thus,

α1,t = a1α1,t−1 + a2α1,t−2 + b2ηt−2 + b1ηt−1 + ηt



Another Example: the ARMA(2,2) Model

• But the measurement equation says α1,t = yt and thus,

y1,t = a1y1,t−1 + a2y1,t−2 + b2ηt−2 + b1ηt−1 + ηt

• This is the original ARMA(2,2) model

• In general, any ARMA(p,q) model can be written as a state
space model



The Normal Linear State Space Model
• All the models above are examples of Normal Linear State

Space Models
• Measurement equation:

yt = Wtδ + Ztβt + εt

• State equation:
βt+1 = Dtβt + ut

• yt contains dependent variable(s)
• Note: so far models all have yt being one variable (e.g.

inflation)
• But yt can be a vector M × 1 vector
• Usual for macroeconomics: VARs have M variables, DSGE

models involve M variables, Dynamic Factor Model with many
variables

• Big Data applications often have M being large (e.g. 100 or
more)

• βt is a K × 1 vector of states



The Normal Linear State Space Model

• Errors in measurement and state equations both can be
vectors

• Need error covariance matrices (not just variances)

• Also may want to have these varying over time (e.g. GARCH
effects)

• Hence, this very general model allows for:

• εt ∼ N (0,Σt)

• ut ∼ N (0,Qt).

• εt and ut are independent of each other and over time



The Normal Linear State Space Model

• The remaining terms are called system matrices

• Wt ,Zt ,Σt ,Qt ,Dt and δ

• Either known or want to estimate them

• Wt is M × p0 matrix

• Zt is M ×K matrix

• Dt is a K ×K matrix



The Normal Linear State Space Model: Examples

• You will usually work with special cases of this very general
modelling framework

• Warning: Some computer packages requires many system
matrices to be constant:

• Zt = Z ,Dt = D,Σt = Σ,Qt = Q

• All of the STS models discussed so far had Wt = 0

• If Wt contains explanatory variables, you combine regression
(Wtδ) with state space model (Ztβt) parts into one model

• Can also add explanatory variables in your state equation

• Local level model: Zt = Dt = 1, Σt = σ2
ε and Qt = σ2

u

• Note: random walk behaviour of trend can be relaxed by
setting Dt = ρ and estimating ρ



The Normal Linear State Space Model: Examples

• STS trend plus seasonality model had Σt = σ2
ε ,

Zt = (1 1 0 0)

Dt =


1 1 0 0
0 −1 −1 −1
0 1 0 0
0 0 1 0


•

Qt =


σ2
u 0 0 0

0 σ2
w 0 0

0 0 0 0
0 0 0 0





DSGE Models as State Space Models

• DSGE = Dynamic, stochastic general equilibrium models
popular in modern macroeconomics and commonly used in
policy circles (e.g. central banks).

• I will not explain the macro theory, other than to note they
are:

• Derived from microeconomic principles (based on agents and
firms decision problems), dynamic (studying how economy
evolves over time) and general equilibrium.

• Solution (using linear approximation methods) is a linear state
space model

• Note: recent work with second order approximations yields
nonlinear state space model

• Nonlinear state space models hot field now



Estimation Strategy for DSGE

• Most linearized DSGE models written as:

Γ0 (θ) st = Γ1 (θ)Et (st+1) + Γ2 (θ) st−1 + Γ3 (θ) ut

• st is vector containing both observed variables (e.g. output
growth, inflation, interest rates) and unobserved variables
(e.g. technology shocks, monetary policy shocks).

• Note, theory usually written in terms of st as deviation of
variable from steady state (an issue I will ignore here to keep
exposition simple)

• θ are structural parameters (e.g. parameters for steady states,
tastes, technology, policy and driving the exogenous shocks).

• ut are structural shocks (N (0, I )).

• Γj (θ) are often highly nonlinear functions of θ



Solving the DSGE Model

• Methods exist to solve linear rational expectations models
such as DSGE models

• If unique equilibrium exists can be written as:

st = A (θ) st−1 + B (θ) ut

• Looks like a VAR, but....

• Some elements of st unobserved

• Interpret this as our state equation

• and highly nonlinear restrictions involved in A (θ) and B (θ)



DSGE Model as a State Space Model

• Let yt be elements of st which are observed.

• Measurement equation:

yt = Cst

where C is matrix which picks out observed elements of st
• This is a restricted version of a state space model



DSGE Model as a State Space Model

• In terms of notation for Normal linear state space model we
have:

• States: βt = st
• Restrictions on how states impact on the data: Zt = C

• Restrictions in state equation: Dt = A (θ)

• Error covariance in state equation: Qt = B (θ)B (θ)′

• Error covariance in measurement equation: Σt = 0

• Note: Standard software packages cannot handle nonlinearity
in θ so must use specialized software

• E.g. DYNARE (http://www.dynare.org/)



Estimation of Normal Linear State Space Models

• I previously discussed estimation for local level model

• Exactly the same idea for Normal Linear State Space model
but more general formulae

• Kalman filter and state smoother to estimate states

• Prediction error decomposition used to calculate likelihood
function

• Likelihood function: use for MLE of any unknown parameters
in Wt ,Zt ,Σt ,Qt ,Dt and δ

• Likelihood based methods for testing or model selection
(information criteria) can be done



Nonlinear, Non-normal State Space Models

• Techniques covered in this lecture (e.g. Kalman filter) require
linearity and Normal errors

• Some interesting models are nonlinear and/or non-Normal

• E.g. Normal errors sometimes inappropriate (e.g. if variable is
a count, etc.)

• E.g. DSGE models which are not linearized

• Much recent research developing econometric methods for
nonlinear state space models

• One important nonlinear model is stochastic volatility



Stochastic Volatility

• In finance, popular alternative to ARCH and GARCH for
modelling time-varying volatility

• Stochastic volatility model:

yt = exp

(
ht
2

)
εt

•
ht+1 = ht + ηt

• εt is i.i.d. N (0, 1) and ηt is i.i.d. N
(
0, σ2

η

)
. εt and ηs are

independent.

• ht is log of the variance of yt (log volatility)

• This is state space model with states being ht , but
measurement equation is not a linear function of ht



Stochastic Volatility
• Exact maximum likelihood estimation of this nonlinear state

space model can be hard (Bayesian estimation is common)
• But approximate estimation can be done easily
• Can use transformation to make approximately Normal linear

state space model
• Approximation can be poor (esp. in finance)
• Square and log the measurement equation:

y ∗t = ht + ε∗t

• where y ∗t = ln
(
y2t

)
and ε∗t = ln

(
ε2t
)
.

• Now the measurement equation is linear so maybe we can use
algorithm for Normal linear state space model?

• No, since error is no longer Normal (i.e. ε∗t = ln
(
ε2t
)
)

• But if you approximate the distribution of ε∗t by Normal can
use Kalman filter, etc.

• Same as local level model but with dependent variable y ∗t



Summary

• A set of econometric tools exist for estimating and forecasting
with state space models

• Kalman filter, state smoother, etc.

• Many models of interest can be put in a state space
framework including:

• Almost everything you covered in earlier study of time series
econometrics plus:

• Structural Time Series models

• DSGE models

• Time-varying parameter models (future lecture)

• Factor models (future lecture)

• Stochastic volatility (alternative to GARCH)


