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Bayesian Theory

Begin with general concepts in Bayesian theory before getting to
specific models.

If you know these general concepts you will never get lost.

What does econometrician do? i) Estimate parameters in a model
(e.g. regression coefficients), ii) Compare different models (e.g.
hypothesis testing), iii) Prediction.

Bayesian econometrics does these based on a few simple rules of
probability.
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Let A and B be two events, p(B |A) is the conditional probability of
B |A. “summarizes what is known about B given A”

Bayesians use this rule with A = something known or assumed (e.g.
the Data), B is something unknown (e.g. coefficients in a model).

Let y be data, y ∗ be unobserved data (i.e. to be forecast), Mi for
i = 1, ..,m be set of models each of which depends on some
parameters, θi .

Learning about parameters in a model is based on the posterior
density: p(θi |Mi , y)

Model comparison based on posterior model probability: p(Mi |y)
Prediction based on the predictive density p(y ∗|y).
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Bayes Theorem

I expect you know basics of probability theory from previous studies,
see Appendix B of my textbook if you do not.

Definition: Conditional Probability

The conditional probability of A given B, denoted by Pr (A|B), is the
probability of event A occurring given event B has occurred.

Theorem: Rules of Conditional Probability including Bayes’ Theorem

Let A and B denote two events, then

Pr (A|B) = Pr(A,B)
Pr(B)

and

Pr (B |A) = Pr(A,B)
Pr(A)

.
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These two rules can be combined to yield Bayes’ Theorem:

Pr (B |A) = Pr (A|B)Pr (B)
Pr (A)

.

Note: Above is expressed in terms of two events, A and B. However,
can be interpreted as holding for random variables, A and B with
probability density functions replacing the Pr ()s in previous formulae.
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Learning About Parameters in a Given Model (Estimation)

Assume a single model which depends on parameters θ

Want to figure out properties of the posterior p(θ|y)
It is convenient to use Bayes’ rule to write the posterior in a different
way.

Bayes’ rule lies at the heart of Bayesian econometrics:

p(B |A) = p(A|B)p(B)
p(A)

.

Replace B by θ and A by y to obtain:

p(θ|y) = p(y |θ)p (θ)
p(y)

.
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Bayesians treat p(θ|y) as being of fundamental interest: “Given the
data, what do we know about θ?”.

Treatment of θ as a random variable is controversial among some
econometricians.

Competitor to Bayesian econometrics, called frequentist econometrics,
says that θ is not a random variable.

For estimation can ignore the term p(y) since it does not involve θ:

p(θ|y) ∝ p(y |θ)p(θ).

p(θ|y) is referred to as the posterior density

p(y |θ) is the likelihood function

p(θ) as the prior density.

“posterior is proportional to likelihood times prior”.
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p(θ), does not depend on the data. It contains any non-data
information available about θ.

Prior information is controversial aspect since it sounds unscientific.

Bayesian answers (to be elaborated on later):

i) Often we do have prior information and, if so, we should include it
(more information is good)

ii) Can work with “noninformative” priors

iii) Can use hierarchical priors which treat prior hyperparameters as
parameters and estimates them

iv) Training sample priors

v) Bayesian estimators often have better frequentist properties than
frequentist estimators (e.g. results due to Stein show MLE is
inadmissible – but Bayes estimators are admissible)

vi) Prior sensitivity analysis
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Prediction in a Single Model

Prediction based on the predictive density p(y ∗|y)
Since a marginal density can be obtained from a joint density through
integration:

p(y ∗|y) =
∫

p(y ∗, θ|y)dθ.

Term inside integral can be rewritten as:

p(y ∗|y) =
∫

p(y ∗|y , θ)p(θ|y)dθ.

Prediction involves the posterior and p(y ∗|y , θ) (more description
provided later)
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Model Comparison (Hypothesis testing)

Models denoted by Mi for i = 1, ..,m. Mi depends on parameters θi .

Posterior model probability is p(Mi |y).
Using Bayes rule with B = Mi and A = y we obtain:

p(Mi |y) =
p(y |Mi )p(Mi )

p(y)

p(Mi ) is referred to as the prior model probability.

p(y |Mi ) is called the marginal likelihood.
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How is marginal likelihood calculated?

Posterior can be written as:

p(θi |y ,Mi ) =
p(y |θi ,Mi )p(θi |Mi )

p(y |Mi )

Integrate both sides with respect to θi , use fact that∫
p(θi |y ,Mi )dθi = 1 and rearrange:

p(y |Mi ) =
∫

p(y |θi ,Mi )p(θ
i |Mi )dθi .

Note: marginal likelihood depends only on the prior and likelihood.
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Posterior odds ratio compares two models:

POij =
p(Mi |y)
p(Mj |y)

=
p(y |Mi )p (Mi )

p(y |Mj )p(Mj )
.

Note: p(y) is common to both models, no need to calculate.
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Can use fact that p(M1|y) + p(M2|y) + ...+ p(Mm|y) = 1 and POij

to calculate the posterior model probabilities.

E.g. suppose m = 2 models and you know:

p(M1|y) + p(M2|y) = 1

PO12 =
p(M1|y)
p(M2|y)

imply

p(M1|y) =
PO12

1+ PO12

p(M2|y) = 1− p(M1|y).

The Bayes Factor is:

BFij =
p(y |Mi )

p(y |Mj )
.
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Example: Deriving Posterior When Data Has Bernoulli
Distribution

Background:

Experiment repeated T times

Each time the outcome can be “success” or “failure”

yt for t = 1, ..,T are random variables for each repetition of
experiment

Realization of yt can be 1 or 0

Probability of success is θ (hence probability of failure is 1− θ)

The goal is to estimate θ
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Example (cont.): The Bernoulli Likelihood function

Notation for things above is: yt ∈ {0, 1} , 0 ≤ θ ≤ 1 and

p(yt |θ) =
{

θ if yt = 1
1− θ if yt = 0.

Let m be the number of successes in T repetitions of experiment

Likelihood function is:

p(y |θ) =
T

∏
t=1

p(yt |θ)

= θm(1− θ)T−m
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Example (cont.): The Beta Prior

View this likelihood in terms of θ: proportional to p.d.f. of a Beta
distribution

See definition in textbook Appendix B or Wikipedia

Most common distribution for random variables bounded to lie in the
interval [0, 1]

Commonly used for parameters which are probabilities (like θ)

Bayesians need prior

Let us also Beta distribution for prior

Prior beliefs concerning θ are represented by

p(θ) ∝ θα−1(1− θ)δ−1
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Example (cont.): Eliciting a Prior

The researcher chooses prior hyperparameters α > 0 and δ > 0 to
reflect beliefs

Called prior elicitation

Properties of Beta distribution imply prior mean is

E (θ) =
α

α + δ

Suppose you believe, a priori, that success and failure are equally likely

E (θ) = 1
2 obtained by setting α = δ

If I look on Wikipedia I see α = δ = 2 has mean at E (θ) = 1
2 but

spreads probability widely over interval [0, 1]

So I might be “relatively noninformative” and choose this for my prior
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Example (cont.): A Noninformative Prior

Or I might set α = δ = 1 and be completely noninformative

Note: α = δ = 1 implies p(θ) ∝ 1

Uniform distribution over interval [0, 1]

Every value for θ receives same probability (equally likely) =
noninformative prior
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Example (cont.): Deriving the Posterior

To get posterior multiply prior times likelihood

p(θ|y) ∝ θα−1(1− θ)δ−1θm(1− θ)T−m

= θα−1(1− θ)δ−1

where

α = α +m

δ = δ + T −m
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Example (cont.): Interpretation and Terminology

Posterior same Beta form as prior (terminology = conjugate)

Posterior has arguments α and δ instead of α and δ

Arguments have been updated:

Begin with prior belief (α or δ) update with data information (m and
T −m)

Posterior combines prior and data information

“Bayesian learning” = learn about θ by combining prior and data
information
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Example (cont.): Predictive Density

Derivations of marginal likelihood and predictive density are a bit
messier

Exercise 7.1 in Bayesian Econometric Methods shows predictive
density has Beta-Binomial distribution

Shows

E (y ∗|y) = α

α + δ

How do I interpret this?

Question: If I run the experiment again what is the probability of
getting a success?

Answer: α
α+δ
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Summary

These few pages have outlined all the basic theoretical concepts
required for the Bayesian to learn about parameters, compare models
and predict.

This is an enormous advantage: Once you accept that unknown
things (i.e. θ, Mi and y ∗) are random variables, the rest of Bayesian
approach is non-controversial.

What are going to do in rest of this course?

See how these concepts work in some models of interest.

First the regression model

Then time series models of interest for macroeconomics

Bayesian computation.
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Bayesian Computation

How do you present results from a Bayesian empirical analysis?

p(θ|y) is a p.d.f. Especially if θ is a vector of many parameters
cannot present a graph of it.

Want features analogous to frequentist point estimates and
confidence intervals.

A common point estimate is the mean of the posterior density (or
posterior mean).

Let θ be a vector with k elements, θ = (θ1, .., θk)
′. The posterior

mean of any element of θ is:

E (θi |y) =
∫

θip(θ|y)dθ.
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Aside Definition B.8: Expected Value

Let g () be a function, then the expected value of g (X ), denoted
E [g (X )], is defined by:

E [g (X )] =
N

∑
i=1

g (xi ) p (xi )

if X is discrete random variable with sample space {x1, x2, x3, .., xN}

E [g (X )] =
∫ ∞

−∞
g (x) p (x) dx

if X is a continuous random variable (provided E [g (X )] < ∞).
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Common measure of dispersion is the posterior standard deviation
(square root of posterior variance)

Posterior variance:

var(θi |y) = E (θ2i |y)− {E (θi |y)}2,

This requires calculating another expected value:

E (θ2i |y) =
∫

θ2i p(θ|y)dθ.

Many other possible features of interest. E.g. what is probability that
a coefficient is positive?

p(θi ≥ 0|y) =
∫ ∞

0
p(θi |y)dθi
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All of these posterior features have the form:

E [g (θ) |y ] =
∫

g(θ)p(θ|y)dθ,

where g(θ) is a function of interest.

All these features have integrals in them. Marginal likelihood and
predictive density also involved integrals.

Apart from a few simple cases, it is not possible to evaluate these
integrals analytically, and we must turn to the computer.

Bayesian Overview 26 / 31



Posterior Simulation

The integrals involved in Bayesian analysis are usually evaluated using
simulation methods.

Will use several methods later on. Here we provide some intuition.

Frequentist asymptotic theory uses Laws of Large Numbers (LLN)
and a Central Limit Theorems (CLT).

A typical LLN: “consider a random sample, Y1, ..YN , as N goes to
infinity, the average converges to its expectation” (e.g. Y → µ)

Bayesians use LLN: “consider a random sample from the posterior,
θ(1), ..θ(S), as S goes to infinity, the average of these converges to
E [θ|y ]”
Note: Bayesians use asymptotic theory, but asymptotic in S (under
control of researcher) not N
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Example: Monte Carlo integration.

Let θ(s) for s = 1, ..,S be a random sample from p(θ|y) and define

ĝS =
1

S

S

∑
s=1

g
(

θ(s)
)
,

then ĝS converges to E [g (θ) |y ] as S goes to infinity.

Monte Carlo integration approximates E [g (θ) |y ], but only if S were
infinite would the approximation error be zero.

We can choose any value for S (but larger values of S will increase
computational burden).

To gauge size of approximation error, use a CLT to obtain numerical
standard error.
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Most Bayesians write own programs (e.g. using Matlab, Julia,
Python, Gauss, R or C++) to do posterior simulation

Bayesian work cannot (easily) be done in standard econometric
packages like Microfit, Eviews or Stata.

New Stata has some Bayes, but limited (and little for
macroeconomics)

I have a Matlab website for VARs, TVP-VARs and TVP-FAVARs (see
my website)

Dimitris Korobilis:
https://sites.google.com/site/dimitriskorobilis/matlab

Joshua Chan: http://joshuachan.org/

Haroon Mumtaz: https://sites.google.com/site/hmumtaz77/

Many more using R see
http://cran.r-project.org/web/views/Bayesian.html
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Learning Outside of Lectures

Go through the textbook and readings provided.

In addition to this:

Computational methods are the most important thing for the aspiring
Bayesian econometrician to learn

Thus, we devote all of the tutorial hours in this course to computer
sessions

Four computer sessions based on four question sheets

Computer code will be provided which will “answer” the questions

Work through/adapt/extend the code

Idea is to develop skills so as to produce your own code or adapt
someone else’s for your purposes
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Learning Outside of Lectures

What about proofs/derivations of theoretical results?

In lectures (with a few exceptions) will not do proofs

E.g. just state a particular posterior in Normal with formula given for
mean and variance

To use Bayesian methods in practice, this is usually all that is needed

But if you want to derive posterior for new model or obtain deeper
understanding need to learn necessary tools

These tools best learned by practicing on your own

I will provide Problem Sheets which give practice problems and ask
for derivations of some key results

Answers are provided, so I will not formally take them up in lectures
or tutorials

Bayesian Econometrics Methods by Chan, Koop, Poirier and Tobias
has many more practice problems (and answers)
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