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Bayesian Analysis of the Normal Linear Regression Model

Now see how general Bayesian theory of overview lecture works in
familiar regression model

In lecture, I will focus on multiple regression under classical
assumptions (independent errors, homoskedasticity, etc.)

Bayesian methods for freeing up classical assumptions exist (see
Chapter 6 of my textbook)
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The Regression Model

Assume k explanatory variables, xi1,..,xik for i = 1, ..,N and
regression model:

yi = β1 + β2xi2 + ...+ βkxik + ε i .

Note xi1 is implicitly set to 1 to allow for an intercept.

Matrix notation:

y =


y1
y2
.
.
yN


ε is N × 1 vector stacked in same way as y
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β is k × 1 vector

X is N × k matrix

X =


1 x12 . . x1k
1 x22 . . x2k
. . . . .
. . . . .
1 xN2 . . xNk


Regression model can be written as:

y = X β + ε.
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The Likelihood Function

Likelihood can be derived under the classical assumptions:

ε is N(0N , h
−1IN) where h = σ−2.

All elements of X are either fixed (i.e. not random variables).

Exercise 10.1, Bayesian Econometric Methods shows that likelihood
function can be written in terms of OLS quantities:

ν = N − k ,

β̂ =
(
X ′X

)−1
X ′y

s2 =

(
y − X β̂

)′ (
y − X β̂

)
ν

Likelihood function:

p(y |β, h) = 1

(2π)
N
2{

h
k
2 exp

[
− h

2

(
β − β̂

)′
X ′X

(
β − β̂

)]}{
h

ν
2 exp

[
− hν

2s−2

]}
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The Prior

Common starting point is natural conjugate Normal-Gamma prior

β conditional on h is now multivariate Normal:

β|h ∼ N(β, h−1V )

Prior for error precision h is Gamma

h ∼ G (s−2, ν)

β,V , s−2 and ν are prior hyperparameter values chosen by the
researcher

Notation: Normal-Gamma distribution

β, h ∼ NG
(

β,V , s−2, ν
)
.
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The Posterior

Multiply likelihood by prior and collecting terms (see Bayesian
Econometrics Methods Exercise 10.1).

Posterior is
β, h|y ∼ NG

(
β,V , s−2, ν

)
where

V =
(
V−1 + X ′X

)−1
,

β = V
(
V−1β + X ′X β̂

)
ν = ν +N

and s−2 is defined implicitly through

νs2 = νs2 + νs2 +
(

β̂ − β
)′ [

V +
(
X ′X

)−1
]−1 (

β̂ − β
)
.
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Marginal posterior for β: multivariate t distribution:

β|y ∼ t
(

β, s2V , ν
)
,

Useful results for estimation:

E (β|y) = β

var(β|y) = νs2

ν − 2
V .

Intuition: Posterior mean and variance are weighted average of
information in the prior and the data.
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What Does a Prior Do?

To show main ideas assume (for now) β is a scalar, h = 1 and its
prior mean is zero

Prior shrinkage: Posterior mean is pulled towards zero (”shrinkage”)

Commonly done to avoid over-fitting/over-parameterization problems

Strength of prior shrinkage controlled through prior variance:

If V is small, then strong prior information β is near 0.

E.g. If V = 0.0001 then Pr (−0.0196 ≤ β ≤ 0.0196) = 0.95

If V is big then prior becomes more non-informative

If V = 100 then Pr (−19.6 ≤ β ≤ 19.6) = 0.95

Note: exactly what “small” and “large” means depends on the
empirical application and units of measurement of data
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A Noninformative Prior

Noninformative prior sets ν = 0 and V is big (big prior variance
implies large prior uncertainty).
But there is not a unique way of doing the latter (see Exercise 10.4 in
Bayesian Econometric Methods).
A common way: V−1 = cIk where c is a scalar and let c go to zero.
This noninformative prior is improper and becomes:

p (β, h) ∝
1

h
.

With this choice we get OLS results.

β, h|y ∼ NG
(

β,V , s−2, ν
)

where
V =

(
X ′X

)−1

β = β̂

ν = N

νs2 = νs2.
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Model Comparison

Case 1: M1 imposes a linear restriction and M2 does not (nested).

Case 2: M1 : y = X1β(1) + ε1 and M2 : y = X2β(2) + ε2, where X1

and X2 contain different explanatory variables (non-nested).

Both cases can be handled by defining models as (for j = 1, 2):

Mj : yj = Xjβ(j) + εj

Non-nested model comparison involves y1 = y2.

Nested model comparison defines M2 as unrestricted regression. M1

imposes the restriction can involve a redefinition of explanatory and
dependent variable.
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Example: Nested Model Comparison

M2 is unrestricted model

y = β1 + β2x2 + β3x3 + ε

M1 restricts β3 = 1, can be written:

y − x3 = β1 + β2x2 + ε

M1 has dependent variable y − x3 and intercept and x2 are
explanatory variables
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Marginal likelihood is (for j = 1, 2):

p(yj |Mj ) = cj

(
|V j |
|V j |

) 1
2 (

νjs
2
j

)− νj
2

cj is constant depending on prior hyperparameters, etc.

PO12 =
c1
(
|V 1|
|V 1|

) 1
2 (

ν1s
2
1

)− ν1
2 p(M1)

c2
(
|V 2|
|V 2|

) 1
2 (

ν2s
2
2

)− ν2
2 p(M2)

Posterior odds ratio depends on the prior odds ratio and contains
rewards for model fit, coherency between prior and data information
and parsimony.
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Model Comparison with Noninformative Priors

Important rule: When comparing models using posterior odds ratios,
it is acceptable to use noninformative priors over parameters which
are common to all models. However, informative, proper priors should
be used over all other parameters.

If we set ν1 = ν2 = 0. Posterior odds ratio still has a sensible
interpretation.

Noninformative prior for h1 and h2 is fine (these parameters common
to both models)

But noninformative priors for β(j)’s cause problems which occur
largely when k1 ̸= k2. (Exercise 10.4 of Bayesian Econometric
Methods)

E.g. noninformative prior for β(j) based on V−1
j = cIkj and letting

c → 0. Since |V j | = 1

c
kj

terms involving kj do not cancel out.

If k1 < k2, PO12 becomes infinite, while if k1 > k2, PO12 goes to
zero.
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Prediction

Want to predict:
y ∗ = X ∗β + ε∗

Remember, prediction is based on:

p (y ∗|y) =
∫ ∫

p (y ∗|y , β, h) p(β, h|y)dβdh.

The resulting predictive:

y ∗|y ∼ t
(
X ∗β, s2

{
IT + X ∗VX ∗′} , ν

)
Model comparison, prediction and posterior inference about β can all
be done analytically.

So no need for posterior simulation in this model.

However, let us illustrate Monte Carlo integration in this model.
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Monte Carlo Integration

Remember the basic LLN we used for Monte Carlo integration

Let β(s) for s = 1, ..,S be a random sample from p(β|y) and g (.) be
any function and define

ĝS =
1

S

S

∑
r=1

g
(

β(s)
)

then ĝS converges to E [g(β)|y ] as S goes to infinity.

How would you write a computer program which did this?
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Step 1: Take a random draw, β(s) from the posterior for β using a
random number generator for the multivariate t distribution.

Step 2: Calculate g
(

β(s)
)
and keep this result.

Step 3: Repeat Steps 1 and 2 S times.

Step 4: Take the average of the S draws g
(

β(1)
)
, ..., g

(
β(S)

)
.

These steps will yield an estimate of E [g(β)|y ] for any function of
interest.

Remember: Monte Carlo integration yields only an approximation for
E [g(β)|y ] (since you cannot set S = ∞).

By choosing S , can control the degree of approximation error.

Using a CLT we can obtain 95% confidence interval for E [g(β)|y ]
Or a numerical standard error can be reported.
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Empirical Illustration

Data set on N = 546 houses sold in Windsor, Canada in 1987.

yi = sales price of the i th house measured in Canadian dollars,

xi2 = the lot size of the i th house measured in square feet,

xi3 = the number of bedrooms in the i th house,

xi4 = the number of bathrooms in the i th house,

xi5 = the number of storeys in the i th house.
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Example uses informative and noninformative priors.

Textbook discusses how you might elicit a prior.

Our prior implies statements of the form ”if we compare two houses
which are identical except the first house has one bedroom more than
the second, then we expect the first house to be worth $5, 000 more
than the second”. This yields prior mean, then choose large prior
variance to indicate prior uncertainty.

The following tables present some empirical results (textbook has lots
of discussion of how you would interpret them).

95% HPDI = highest posterior density interval

Shortest interval [a, b] such that:

p (a ≤ βj ≤ b|y) = 0.95.
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Prior and Posterior Means for β
(standard deviations in parentheses)

Prior Posterior

Informative
Using Noninf

Prior
Using Inf
Prior

β1
0

(10, 000)
−4, 009.55
(3, 593.16)

−4, 035.05
(3, 530.16)

β2
10
(5)

5.43
(0.37)

5.43
(0.37)

β3
5, 000
(2, 500)

2, 824.61
(1, 211.45)

2, 886.81
(1, 184.93)

β4
10, 000
(5, 000)

17, 105.17
(1, 729.65)

16, 965.24
(1, 708.02)

β5
10, 000
(5, 000)

7, 634.90
(1, 005.19)

7, 641.23
(997.02)
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Model Comparison involving β

Informative Prior

p (βj > 0|y) 95% HPDI
Posterior Odds
for βj = 0

β1 0.13 [−10, 957, 2, 887] 4.14

β2 1.00 [4.71, 6.15] 2.25× 10−39

β3 0.99 [563.5, 5, 210.1] 0.39

β4 1.00 [13, 616, 20, 314] 1.72× 10−19

β5 1.00 [5, 686, 9, 596] 1.22× 10−11

Noninformative Prior

p (βj > 0|y) 95% HPDI
Posterior Odds
for βj = 0

β1 0.13 [−11, 055, 3, 036] —

β2 1.00 [4.71, 6.15] —

β3 0.99 [449.3, 5, 200] —

β4 1.00 [13, 714, 20, 497] —

β5 1.00 [5, 664, 9, 606] —
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Posterior Results for β2 Calculated Various Ways

Mean
Standard
Deviation

Numerical St.
Error

Analytical 5.4316 0.3662 —

Number
of Reps

S = 10 5.3234 0.2889 0.0913

S = 100 5.4877 0.4011 0.0401

S = 1, 000 5.4209 0.3727 0.0118

S = 10, 000 5.4330 0.3677 0.0037

S = 100, 000 5.4323 0.3664 0.0012
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Summary

So far we have worked with Normal linear regression model using
natural conjugate prior

This meant posterior, marginal likelihood and predictive distributions
had analytical forms

But with other priors and more complicated models do not get
analytical results.

Next we will present some popular extensions of the regression model
to introduce another tool for posterior computation: the Gibbs
sampler.

The Gibbs sampler is a special type of Markov Chain Monte Carlo
(MCMC) algorithm.

Bayesian Methods for Regression 23 / 56



Normal Linear Regression Model with Independent
Normal-Gamma Prior

Keep the Normal linear regression model (under the classical
assumptions) as before.

Likelihood function presented above

Parameters of model are β and h.
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The Prior

Before we had conjugate prior where p (β|h) was Normal density and
p (h) Gamma density.

Now use similar prior, but assume prior independence between β and
h.

p (β, h) = p (β) p (h) with p (β) being Normal and p (h) being
Gamma:

β ∼ N
(

β,V
)

and
h ∼ G (s−2, ν)

Key difference: now V is now the prior covariance matrix of β, with
conjugate prior we had var(β|h) = h−1V .
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The Posterior

The posterior is proportional to prior times the likelihood.

The joint posterior density for β and h does not take form of any
well-known and understood density – cannot be directly used for
posterior inference.

However, conditional posterior for β (i.e. conditional on h) takes a
simple form:

β|y , h ∼ N
(

β,V
)

where
V =

(
V−1 + hX ′X

)−1

β = V
(
V−1β + hX ′y

)
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Conditional posterior for h takes simple form:

h|y , β ∼ G (s−2, ν)

where
ν = N + ν

and

s2 =
(y − X β)′ (y − X β) + νs2

ν

Econometrician is interested in p (β, h|y) (or p (β|y)), NOT the
posterior conditionals, p (β|y , h) and p (h|y , β).

Since p (β, h|y) ̸= p (β|y , h) p (h|y , β), the conditional posteriors do
not directly tell us about p (β, h|y).
But, there is a posterior simulator, called the Gibbs sampler, which
uses conditional posteriors to produce random draws, β(s) and h(s) for
s = 1, ..,S , which can be averaged to produce estimates of posterior
properties just as with Monte Carlo integration.
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The Gibbs Sampler

Gibbs sampler is powerful tool for posterior simulation used in many
econometric models.

We will motivate general ideas before returning to regression model

General notation: θ is a p−vector of parameters and p (y |θ) , p (θ)
and p (θ|y) are the likelihood, prior and posterior, respectively.

Let θ be partitioned into blocks as θ =
(

θ′(1), θ′(2), .., θ′(B)

)′
. E.g. in

regression model set B = 2 with θ(1) = β and θ(2) = h.
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Intuition: i) Monte Carlo integration takes draws from p (θ|y) and
averages them to produce estimates of E [g (θ) |y ] for any function of
interest g (θ).

ii) In many models, it is not easy to draw from p (θ|y). However, it
often is easy to draw from p

(
θ(1)|y , θ(2), .., θ(B)

)
,

p
(

θ(2)|y , θ(1), θ(3).., θ(B)

)
, ..., p

(
θ(B)|y , θ(1), .., θ(B−1)

)
.

Note: Preceding distributions are full conditional posterior
distributions since they define a posterior for each block conditional
on all other blocks.

iii) Drawing from the full conditionals will yield a sequence
θ(1), θ(2), .., θ(s) which can be averaged to produce estimates of
E [g (θ) |y ] in the same manner as Monte Carlo integration.

This is called Gibbs sampling
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More motivation for the Gibbs sampler

Regression model with B = 2: β and h

Suppose that you have one random draw from p (β|y). Call this draw
β(0).

Since p (β, h|y) = p (h|y , β) p (β|y), a draw from p
(
h|y , β(0)

)
is a

valid draw of h. Call this h(1).

Since p (β, h|y) = p (β|y , h) p (h|y), a random draw from

p
(

β|y , h(1)
)
is a valid draw of β. Call this β(1)

Hence,
(

β(1), h(1)
)
is a valid draw from p (β, h|y).

You can continue this reasoning indefinitely producing
(

β(s), h(s)
)
for

s = 1, ..,S
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Hence, if you can successfully find β(0), then sequentially drawing
p (h|y , β) and p (β|y , h) will give valid draws from posterior.

Problem with above strategy is that it is not possible to find such an
initial draw β(0).

If we knew how to easily take random draws from p (β|y), we could
use this and p (h|β, y) to do Monte Carlo integration and have no
need for Gibbs sampling.

However, it can be shown that subject to weak conditions, the initial
draw β(0) does not matter: Gibbs sampler will converge to a sequence
of draws from p (β, h|y).
In practice, choose β(0) in some manner and then run the Gibbs
sampler for S replications.

Discard S0 initial draws (“the burn-in”) and remaining S1 used to
estimate E [g (θ) |y ]
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Why is Gibbs sampling so useful?

In Normal linear regression model with independent Normal-Gamma
prior Gibbs sampler is easy

p (β|y , h) is Normal and p (h|y , β) and Gamma (easy to draw from)

Huge number of other models have hard joint posterior, but easy
posterior conditionals

tobit, probit, stochastic frontier model, Markov switching model,
threshold autoregressive, smooth transition threshold autoregressive,
other regime switching models, state space models, some
semiparametric regression models, etc etc etc.

What if the full posterior conditionals do not have simple form?

Many other algorithms exist for handling general cases,
Metropolis-Hastings algorithm is most popular
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The Metropolis-Hastings Algorithm

This is another popular class of algorithms useful when Gibbs
sampling is not easy

For now, I leave the regression model and return to our general
notation:

θ is a vector of parameters and p (y |θ) , p (θ) and p (θ|y) are the
likelihood, prior and posterior, respectively.

Metropolis-Hastings algorithm takes draws from a convenient
candidate generating density.

Let θ∗ indicate a draw taken from this density which we denote as

q
(

θ(s−1); θ
)
.

Notation: θ∗ is a draw taken of the random variable θ whose density
depends on θ(s−1).
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We are drawing the wrong distribution, q
(

θ(s−1); θ
)
, instead of

p (θ|y)
We have to correct for this somehow.

Metropolis-Hastings algorithm corrects for this via an acceptance
probability

Takes candidate draws, but only some of these candidate draws are
accepted.
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The Metropolis-Hastings algorithm takes following form:

Step 1: Choose a starting value, θ(0).

Step 2: Take a candidate draw, θ∗ from the candidate generating

density, q
(

θ(s−1); θ
)
.

Step 3: Calculate an acceptance probability, α
(

θ(s−1), θ∗
)
.

Step 4: Set θ(s) = θ∗ with probability α
(

θ(s−1), θ∗
)
and set

θ(s) = θ(s−1) with probability 1− α
(

θ(s−1), θ∗
)
.

Step 5: Repeat Steps 1, 2 and 3 S times.

Step 6: Take the average of the S draws g
(

θ(1)
)
, ..., g

(
θ(S)

)
.
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These steps will yield an estimate of E [g(θ)|y ] for any function of
interest.

Note: As with Gibbs sampling, Metropolis-Hastings algorithm requires
the choice of a starting value, θ(0). To make sure that the effect of
this starting value has vanished, wise to discard S0 initial draws.

Intuition for acceptance probability, α
(

θ(s−1), θ∗
)
, given in textbook

(pages 93-94).

α
(

θ(s−1), θ∗
)
=

min

[
p(θ=θ∗|y )q(θ∗;θ=θ(s−1))

p(θ=θ(s−1)|y)q(θ(s−1);θ=θ∗)
, 1

]

Bayesian Methods for Regression 36 / 56



Choosing a Candidate Generating Density

Independence Chain Metropolis-Hastings Algorithm

Uses a candidate generating density which is independent across
draws.

That is, q
(

θ(s−1); θ
)
= q∗ (θ) and the candidate generating density

does not depend on θ(s−1).

Useful in cases where a convenient approximation exists to the
posterior. This convenient approximation can be used as a candidate
generating density.

Acceptance probability simplifies to:

α
(

θ(s−1), θ∗
)
= min

p (θ = θ∗|y) q∗
(

θ = θ(s−1)
)

p
(
θ = θ(s−1)|y

)
q∗ (θ = θ∗)

, 1

 .
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Choosing a Candidate Generating Density

Random Walk Chain Metropolis-Hastings Algorithm

Popular with DSGE – useful when you cannot find a good
approximating density for the posterior.

No attempt made to approximate posterior, rather candidate
generating density is chosen to wander widely, taking draws
proportionately in various regions of the posterior.

Generates candidate draws according to:

θ∗ = θ(s−1) + w

where w is called the increment random variable.
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Acceptance probability simplifies to:

α
(

θ(s−1), θ∗
)
= min

[
p (θ = θ∗|y)

p
(
θ = θ(s−1)|y

) , 1]

Choice of density for w determines form of candidate generating
density.

Common choice is Normal:

q
(

θ(s−1); θ
)
= fN(θ|θ(s−1),Σ).

Researcher must select Σ. Should be selected so that the acceptance
probability tends to be neither too high nor too low.

There is no general rule which gives the optimal acceptance rate. A
rule of thumb is that the acceptance probability should be roughly 0.5.

A common approach sets Σ = cΩ where c is a scalar and Ω is an
estimate of posterior covariance matrix of θ (e.g. the inverse of the
Hessian evaluated at the posterior mode)
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Bayesian Model Averaging
Overview

BMA can be used with any set of models

Here use it with Big Data regression (many explanatory variables)

Model selection: choose a single model and present estimates or
forecasts based on it

Model averaging: take a weighted average of estimates or forecasts
from all models with weights given by p(Mr |y)
Let Mr for r = 1, ..,R denote R models.

If ϕ is a parameter to be estimated (or a function of parameters) or a
variable to be forecast, then the rules of probability imply:

p (ϕ|y) =
R

∑
r=1

p (ϕ|y ,Mr ) p (Mr |y)

Allows for a formal treatment of model uncertainty.

Model selection: choose a single model and act as though it were true

BMA incorporates uncertainty about which model generated the data.
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The Model Space

Let Xr be a N × kr matrix containing some (or all) columns of X ,
then each model is

y = αιN + Xr βr + ε

ιN is a N × 1 vector of ones so as to say each model contains an
intercept

Other assumptions as for Normal linear regression model under
classical assumptions.

2K possible choices for Xr and, thus, the number of models, R = 2K .

Computational concerns: estimating every model will be impossible if
K is large

BMA empirical example will have K = 41

If each model could be estimated in 0.001 seconds, over 100 years to
estimate them all

Use natural conjugate prior to make estimation of each model as fast
as possible
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BMA Priors

We want a prior for model r that is:

Informative (so as to provide valid marginal likelihoods for model
comparison)

Objective (requiring minimal subjective input)

Automatic (does not have to be individually chosen for each of the
many models)

g-prior is commonly used:

Prior mean shrinks coefficients towards zero:

β
r
= 0

Prior covariance matrix is h−1V r where

V r =
(
gX ′

rXr

)−1

g is a scalar
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The g-prior

The g-prior was suggested in Zellner (1986)

Justification:

Under non-informative prior h−1 (X ′
rXr )

−1 is posterior covariance
matrix

Amount of information in data for estimating βr (information matrix)

Prior covariance matrix h−1 (gX ′
rXr )

−1 says:

Prior information that βr = 0 takes same form as data information

g controls relative strengths of the prior and data information.

g = 1: prior and data are given equal weight.

g = 0.01: prior information receives one per cent of the weight as
data

There exist commonly-used rules of thumb for choosing g

Or g can be treated as unknown parameter with own prior and
estimated

Noninformative prior for h typically used
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BMA Posterior

With natural conjugate prior, analytical results for Mr

Posterior is Normal-Gamma

Marginal likelihood (for producing posterior model probs) analytical

Predictive density is t-distribution

Key thing: for each model, everything we need can be calculated
quickly

But even with this, doing BMA with 2K models for K > 20 or so too
computationally demanding
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BMA Computation

Previously we talked about posterior simulation as tool for learning
about complicated posteriors

For BMA can do model simulation

A popular algorithm is Markov Chain Monte Carlo Model
Composition (MC3)

Similar to a random walk Metropolis-Hastings algorithm, but models
are drawn instead of parameters
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MC-cubed

M (s) for s = 1, ..,S are drawn models

Averaging estimates/forecasts over drawn models will converge to the
true BMA posterior or predictive estimates as S → ∞.

if ϕ is parameter of interest, then

ϕ̂ =
1

S

S

∑
s=1

E
(

ϕ|y ,M (s)
)

will converge to E (ϕ|y).
Frequencies with which models are drawn can be used to calculate
Bayes factors.

If MC3 algorithm draws Mi A times and Mj B times, then
A
B converges to Bayes factor comparing Mi to Mj .

In practice, discard initial draws as burn-in
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MC-cubed: How are models drawn?

Want to draw s = 1, ..,S and suppose you have drawn M (s−1)

Candidate model, M∗, is proposed drawn randomly (with equal
probability) from a set of models including:

i) M (s−1)

ii) all models which delete one explanatory variable from M (s−1)

iii) all models which add one explanatory variable to M (s−1).

Candidate model accepted with probability:

α
(
M (s−1),M∗

)
= min

[
p(y |M∗)p(M∗)

p(y |M (s−1))p(M (s−1))
, 1

]
If M∗ is accepted then M (s) = M∗, else M (s) = M (s−1).

Can prove MC-cubed will converge to true BMA posterior/predictive
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BMA Application: The Determinants of Economic Growth

To illustrate BMA use a classic cross-country growth regression data
set

Why do some countries grow faster than others?

Numerous potential explanations (e.g. education, investment,
governance, institutions, trade, colonialism, etc. etc.)

Dependent variable: average growth in GDP per capita from
1960-1992

K = 41 explanatory variables (all normalized by subtracting of mean
and dividing by st. dev.)

This is Big Data

But data set has only N = 72 countries

Note: will use this data set in machine learning lecture
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BMA Application

Cross-country growth regression data set with N = 72 and K = 41

Use common recommendation to set g = 1
N if N > K 2 or g = 1

K2 if
N ≤ K 2

Run MC-cubed algorithm for 2, 200, 000 draws, discarding first
200, 000 as burn-in

Is this enough draws?

Convergence diagnostic: calculate posterior model probabilities
analytically and using MC3 and compare

Next table indicates convergence

Note that best model receives less than 1% of posterior model

Model selection puts all weight on this single model — ignoring huge
amount of model uncertainty
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Posterior Model Probabilities
for Top 10 Models

p (Mr |y)
Analytical

p (Mr |y)
MC3 estimate

1 0.0087 0.0089

2 0.0076 0.0077

3 0.0051 0.0050

4 0.0034 0.0035

5 0.0031 0.0032

6 0.0029 0.0029

7 0.0027 0.0025

8 0.0027 0.0027

9 0.0027 0.0026

10 0.0024 0.0022
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BMA Application

Next table presents results:

Posterior mean and standard deviation for each explanatory variable
using BMA and BMS

Rule of thumb: if an estimate (posterior mean) more than two
standard deviations from zero likely to be important

Column labelled ”Prob.” = probability that the corresponding
explanatory variable should be included.

= proportion of models drawn by MC3 which contain the
corresponding explanatory variable

BMS ensures parsimony by choosing 14 variables

By ignoring model uncertainty estimates are more precise (smaller st.
dev.)

BMA ensures parsimony by averaging over many small models

Average number of exp. vars in a model drawn by MC3 is 11.4
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Point Estimates and Standard Devs of Regression Coefficients

(Mean and standard deviations multiplied by 100)

BMA BMS

Explanatory Variable Prob. Mean. St. Dev. Mean St. Dev.

Primary School Enrolment 0.207 0.104 0.234 0.048 0.018

Life expectancy 0.933 0.961 0.392 0.090 0.020

GDP level in 1960 0.999 −1.425 0.278 −1.463 0.193

Fraction GDP in Mining 0.459 0.147 0.181 0.322 0.108

Degree of Capitalism 0.457 0.151 0.183 0.387 0.094

No. Years Open Economy 0.513 0.260 0.283 0.557 0.138

% Pop. Speaking English 0.069 −0.011 0.047 – –

% Pop. Speak. For. Lang. 0.068 0.012 0.059 – –

Exchange Rate Distortions 0.082 −0.017 0.070 – –

Equipment Investment 0.923 0.552 0.236 0.548 0.128

Non-equipment Investment 0.434 0.136 0.174 0.347 0.099

St. Dev. of Black Mkt. Prem. 0.048 −0.006 0.037 – –

Outward Orientation 0.037 −0.003 0.029 – –
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Point Estimates and Standard Devs of Regression Coefficients

(Mean and standard deviations multiplied by 100)

BMA BMS

Explanatory Variable Prob. Mean. St. Dev. Mean St. Dev.

Black Market Premium 0.179 −0.040 0.097 – –

Area 0.030 −0.001 0.021 – –

Latin America 0.215 −0.082 0.191 – –

Sub-Saharan Africa 0.738 −0.473 0.347 −0.543 0.124

Higher Education Enrolment 0.046 −0.008 0.056 – –

Public Education Share 0.032 −0.001 0.024 – –

Revolutions and Coups 0.031 −0.001 0.023 – –

War 0.075 −0.014 0.062 – –
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Posteror Estimates and Standard Devs of Regression Coefficients

Bayesian Model Averaging Single Best Model

Explanatory Variable Prob. Mean St. Dev. Mean St. Dev.

Political Rights 0.094 −0.028 0.107 – –

Civil Liberties 0.131 −0.050 0.015 −0.284 0.176

Latitude 0.041 0.001 0.052 – –

Age 0.085 −0.015 0.058 – –

British Colony 0.041 −0.003 0.032 – –

Fraction Buddhist 0.196 0.047 0.109 – –

Fraction Catholic 0.128 −0.011 0.121 – –

Fraction Confucian 0.990 0.493 0.127 0.503 0.090

Ethnolinguistic Fractionalization 0.060 0.010 0.056 – –

French Colony 0.049 0.007 0.040 – –
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Posteror Estimates and Standard Devs of Regression Coefficients

Bayesian Model Averaging Single Best Model

Explanatory Variable Prob. Mean St. Dev. Mean St. Dev.

Fraction Hindu 0.126 −0.035 0.120 – –

Fraction Jewish 0.037 −0.002 0.028 – –

Fraction Muslim 0.640 0.025 0.023 0.295 0.093

Primary Exports 0.100 −0.029 0.105 −0.352 0.136

Fraction Protestant 0.455 −0.143 0.178 −0.277 0.098

Rule of Law 0.489 0.244 0.279 0.563 0.134

Spanish Colony 0.058 0.010 0.068 – –

Population Growth 0.037 0.005 0.048 – –

Ratio Workers to Population 0.045 −0.005 0.043 – –

Size of Labor Force 0.075 0.018 0.097 – –
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Summary

This lecture shows how Bayesian ideas work in familiar context
(regression model)

Occasionally analytical results are available (no need for posterior
simulation)

Usually posterior simulation is required.

Monte Carlo integration is simplest, but rarely possible to use it.

Gibbs sampling (and related MCMC) methods can be used for
estimation and prediction for a wide variety of models

Metropolis-Hastings algorithms popular and can be combined with
Gibbs sampling (Metropolis-within-Gibbs)

Note: There are methods for calculating marginal likelihoods using
Gibbs sampler output
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