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Bayesian Machine Learning Methods: Overview

Machine learning is a a very broad topic, involving a range of methods

Widely used in many statistical and professional disciplines, beginning
to be used in economics

Broadly speaking, it is all about finding patterns in data in an
automatic fashion (i.e. via the machine)

Relates to data mining/artificial intelligence/data science

We will cover a few machine learning methods which are Bayesian
(many exist which are not Bayesian)

Focus on those we have seen used in economics

Focus on regression model (but they can be used with other models)
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Bayesian Machine Learning Methods: Big Data

Big Data is hot topic that may revolutionize empirical work and
change the way we do econometrics

“Big” Data may be “tall” or “fat”

Tall Data = data with many observations

Fat Data = data with many variables

In macroeconomics, Fat Data is common

”Big Data” in this chapter means ”Fat Data”
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Bayesian Machine Learning Methods Overview

In this lecture will show some Big Data methods in context of
regression, but they also can be used with other models

To illustrate use classic cross-country growth regression data set (see
Lecture 2 on Regression)

Dependent variable: average growth in GDP per capita from
1960-1992

K = 41 explanatory variables (all normalized by subtracting of mean
and dividing by st. dev.)

But data set has only N = 72 countries

Big Data: large number of explanatory variables relative to number of
observations

In other Big Data applications can have K > N (e.g. stock returns
for large K companies observed only for a few months).
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Bayesian Machine Learning Methods Overview

Why not just use conventional methods?

Intuition:

N reflects amount of information in the data

K reflects dimension of things trying to estimate with that data

If K is large relative to N you are trying to do too much with too
little information

If K < N a method such as least squares will produce numbers, but
very imprecise estimation (e.g. wide confidence intervals)

If K > N least squares will fail

Bayesian prior information (if you have it), gives you more
information to surmount this problem

E.g. E (β|y) using natural conjugate prior will exist even if K > N
and var (β|y) will be reduced through use of prior information
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Bayesian Machine Learning Methods Overview

Over-fitting: data typically contains measurement error (noise)

Regression methods seek to find pattern in the data

With large data sets, often not a problem (things average out over
large number of observations)

But with Fat Data, easy to “fit the noise” rather than pattern in the
data

Good in-sample fit, but bad out-of-sample forecasting
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Summary: New Tricks for Econometrics

Conventional statistical methods (least squares, maximum likelihood,
hypothesis testing) do not work

New methods are called for and many of these are Bayesian

This lecture discusses two main ones:

i) Stochastic search variable selection (SSVS)

ii) Least absolute shrinkage and selection operator (LASSO)
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Variable Selection and Shrinkage Using Hierarchical Priors

Any sort of prior information can be used to overcome lack of data
information with Big Data regression

But what if researcher does not have such prior information?

Hierarchical priors are a common alternative

A simple example: g-prior but treat g as unknown parameter with its
own prior

Global-local shrinkage priors are growing in popularity (in many
models, not only regression)

I introduce two popular ones: LASSO and SSVS

Many others (and not all Bayesian)
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SSVS: Overview

To show main ideas assume (for now) β is a scalar and remember
degree of shrinkage controlled by prior variance

SSVS prior:

β|γ ∼ (1− γ)N
(
0, τ2

0

)
+ γN

(
0, τ2

1

)
τ0 is small and τ1 is large

γ = 0 or 1.

If γ = 0, tight prior shrinking coefficient to be near zero

If γ = 1, non-informative prior and β estimated in a data- based
fashion.

SSVS treats γ as unknown and estimates it

Data choose whether to select a variable or omit it (in the sense of
shrinking its coefficient to be very near zero).
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SSVS: Overview

prior for β is hierarchical: depends on γ which has its own prior.

Gibbs sampler takes draw of γ and, conditional on these, results for
independent Normal-Gamma prior used to draw β and h.

If γ = 1 use N
(
0, τ2

1

)
prior, else use N

(
0, τ2

0

)
Output from this GIbbs sampler can be used to:

Do something similar to BMA: averages over restricted (when γ = 0
is drawn) and unrestricted (γ = 1) models

Do BMS (variable selection):

If Pr (γ = 1|y) > 1
2 choose unrestricted model, else choose restricted

model

Can use threshold other than 1
2
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SSVS in Multiple Regression

We have posterior results for regression model with prior

N
(

β,V
)

SSVS prior makes specific choices for β and V

β = 0 so as to shrink coefficients towards zero

V = DD

D is diagonal matrix with elements

di =

{
τ0i if γi = 0
τ1i if γi = 1

We now have i = 1, ..,K

γi ∈ {0, 1} indicating whether each variable is excluded

Small/large prior variances, τ2
0i and τ2

1i , for each variable
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SSVS: Gibbs Sampler

Conditional on draw of γ we are in familiar world

Use independent Normal-Gamma posterior for β and h

What about γ?

Needs a prior

A simple choice is:

Pr (γi = 1) = q
i

Pr (γi = 0) = 1− q
i

Non-informative choice is q
i
= 1

2 (each coefficient is a priori equally
likely to be included as excluded)
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SSVS: Gibbs Sampler

Can show conditional posterior distribution is Bernoulli:

Pr (γi = 1|y ,γ) = qi ,

Pr (γi = 0|y ,γ) = 1− qj ,

where

qj =

1

τ1j
exp

(
−

γ2
j

2τ2
1j

)
q
j

1

τ1j
exp

(
−

γ2
j

2τ2
1j

)
q
j
+

1

τ0j
exp

(
−

γ2
j

2τ2
0j

)(
1− q

j

) .

Bayesian Machine Learning 13 / 33



SSVS: Choosing Small and Large Prior Variances

Researcher must choose τ2
0i and τ2

1i

Want τ2
0i to imply virtually all of prior probability is attached to

region where βi is so small as to be negligible

Approximate rule of thumb: 95% of the probability of a distribution
lies within two standard deviations from its mean.

E.g. is τ0i = 0.01 small?

Expresses a prior belief that βi is less than 0.02 in absolute value.

Is βi = 0.02 a “small” value or not?

Depends on empirical application at hand and units dependent and
explanatory variables are measured in

Sometimes researcher can subjectively make good choices for τ0i

But often not, want a method of choosing them that does not require
(much) prior input from researcher
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SSVS: Choosing Small and Large Prior Variances

Common to use “default semi-automatic approach”

Choose τ2
0i and τ2

1i based on initial estimation procedure.

Use initial estimates (e.g. OLS) from regression with all exp vars:

produce σ̂i – the standard error of βi .

Set τ0i =
1
c × σ̂i and τ1i = c × σ̂i for large value for c (e.g. c = 10

or 100).

Basic idea: σ̂i is estimate of the standard deviation of βi

Question: how do we choose small value for prior variance of βi?

Answer: choose one which is small relative to its standard deviation
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SSVS Application

Use cross-country growth data set.

Default semi-automatic prior elicitation approach with c = 10.

110, 000 draws of which first 10, 000 are discarded as the burn-in.

Single Best Model results use SSVS but with γi not drawn, but fixed

Set γi = 1 if Pr (γi = 1|y) > 1
2 and set γi = 0 otherwise.

Pr (γi = 1|y) obtained using an initial run of MCMC algorithm.
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SSVS Application

Following tables show SSVS results similar to BMA results

Similar estimates and standard deviations for β.

Variable selection results also show high degree of similarity.

SSVS is selecting 11 variables which is slightly more parsimonious
than the 14 selected by BMS.

Note: in Single Best Model results posterior means of variables not
selected very near to zero and st devs very small

Default semi-automatic approach’s “small” prior variance is shrinking
to zero

Note: variable selection (which ignores model uncertainty) leads to
estimates which are usually larger in absolute value and are more
precise
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SSVS Point Estimates and Standard Devs of Regression Coefficients

(Mean and standard deviations multiplied by 100)

SSVS Single Best Model

Explanatory Variable Pr (γ = 1|y) Mean St. Dev. Mean St. Dev.

Primary School Enrolment 0.256 0.111 0.204 2× 10−5 0.002

Life expectancy 0.956 0.991 0.365 1.124 0.236

GDP level in 1960 1.000 −1.410 0.286 −1.299 0.202

Fraction GDP in Mining 0.664 0.204 0.179 0.258 0.107

Degree of Capitalism 0.575 0.170 0.176 0.240 0.108

No. Years Open Economy 0.553 0.248 0.267 0.459 0.141

% Pop. Speaking English 0.171 −0.024 0.071 −2× 10−5 0.001

% Pop. Speak. For. Lang. 0.174 0.024 0.086 7× 10−6 0.001

Exchange Rate Distortions 0.215 −0.038 0.103 −3× 10−5 0.001

Equipment Investment 0.917 0.486 0.230 0.538 0.141

Non-equipment Investment 0.584 0.171 0.175 0.282 0.109
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SSVS Point Estimates and Standard Devs of Regression Coefficients

(Mean and standard deviations multiplied by 100)

SSVS Single Best Model

Explanatory Variable Pr (γ = 1|y) Mean St. Dev. Mean St. Dev.

St. Dev. of Black Mkt. Prem. 0.138 −0.012 0.054 −2× 10−5 0.001

Outward Orientation 0.129 −0.013 0.055 −7× 10−6 0.001

Black Market Premium 0.340 −0.068 0.116 −1× 10−5 0.001

Area 0.080 −0.001 0.035 3× 10−6 0.001

Latin America 0.285 −0.105 0.205 −6× 10−5 0.003

Sub-Saharan Africa 0.699 −0.447 0.362 −0.378 0.135

Higher Education Enrolment 0.120 −0.022 0.100 −9× 10−6 0.002

Public Education Share 0.119 0.005 0.047 1× 10−6 0.001

Revolutions and Coups 0.110 0.002 0.047 −9× 10−6 0.001

War 0.204 −0.034 0.094 −2× 10−5 0.001
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SSVS Posteror Estimates and Standard Devs of Regression Coefficients

SSVS Single Best Model

Explanatory Variable Pr (γ = 1|y) Mean St. Dev. Mean St. Dev.

Political Rights 0.130 −0.033 0.121 −1× 10−4 0.004

Civil Liberties 0.187 −0.070 0.181 −2× 10−4 0.004

Latitude 0.104 0.006 0.086 3× 10−5 0.002

Age 0.237 −0.041 0.093 −2× 10−5 0.001

British Colony 0.084 −0.005 0.051 −5× 10−5 0.002

Fraction Buddhist 0.324 0.076 0.132 3× 10−5 0.001

Fraction Catholic 0.216 −0.023 0.158 −2× 10−5 0.002

Fraction Confucian 0.972 0.483 0.154 0.542 0.098

Ethnolinguistic Fractionalization 0.141 0.023 0.085 1× 10−5 0.002

French Colony 0.138 0.017 0.067 3× 10−5 0.001
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SSVS Posteror Estimates and Standard Devs of Regression Coefficients

SSVS Single Best Model

Explanatory Variable Pr (γ = 1|y) Mean St. Dev. Mean St. Dev.

Fraction Hindu 0.193 −0.068 0.184 −5× 10−6 0.003

Fraction Jewish 0.135 −0.008 0.052 −1× 10−5 0.001

Fraction Muslim 0.624 0.255 0.241 0.318 0.101

Primary Exports 0.243 −0.073 0.164 −7× 10−5 0.002

Fraction Protestant 0.603 −0.189 0.187 −0.276 0.107

Rule of Law 0.485 0.215 0.264 8× 10−5 0.002

Spanish Colony 0.129 0.024 0.109 −2× 10−5 0.002

Population Growth 0.116 0.017 0.096 3× 10−6 0.002

Ratio Workers to Population 0.132 −0.013 0.071 2× 10−5 0.001

Size of Labor Force 0.141 0.046 0.167 9× 10−5 0.003
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LASSO: Theory

LASSO = Least absolute shrinkage and selection operator

Developed as a frequentist shrinkage and variable selection method
for Fat Data regression models

Frequentist intuition: OLS estimates minimize sum of squared
residuals

(y − X β)′ (y − X β)

LASSO minimizes

(y − X β)′ (y − X β) + λ
k

∑
j=1

|βj |

adds penalty term which depends on magnitude of the regression
coefficients

Bigger values for |βj | penalized (shrink towards zero)

λ is shrinkage parameter.
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LASSO: Theory

LASSO estimate can be given a Bayesian interpretation:

equivalent to Bayesian posterior modes if Laplace prior used for β

I will not define Laplace distribution since will not work with it
directly due to following:

Laplace distribution can be written as scale mixture of Normals (i.e. a
mixture of Normal distributions with different variances):

βi ∼ N
(
0, h−1τ2

i

)
τ2
i ∼ Exp

(
λ2

2

)
Exp (.) is exponential distribution (special case of Gamma)

Hierarchical prior: depends on τ2
i (parameters to be estimated) which

have own prior

Note: smaller τ2
i = stronger shrinkage of βi

Can show λ plays same role as frequentist λ above
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LASSO: Theory

Bayesian inference can be done using MCMC

Main idea: conditional on τ2
i , prior is Normal prior

Can use standard results for Normal linear regression to obtain
p (β|y , h, τ) and p (h|y , β, τ) where τ = (τ1, .., τK )

′

All we need is new blocks in MCMC algorithm for drawing τ and λ

Details given in next slide, but note basic strategy same as for SSVS:

Use hierarchical Normal prior for β

Conditional on some other parameters (here τ, with SSVS it was γ)
obtain Normal linear regression model

So just need to work out conditional posterior for these other
parameters

Note: many variants on LASSO (elastic net LASSO) adopt similar
strategy
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LASSO: Theory

Write LASSO prior covariance matrix of β as

V = h−1DD

D is diagonal matrix with diagonal elements τi for i = 1, ..,K

Then β|y , h, τ is N
(

β,V
)
where

β =
(
X ′X + (DD)−1

)−1
X ′y

V = h−1
(
X ′X + (DD)−1

)−1

h|y , β, τ is G (s−2, ν) with

ν = N +K

s2 =
(y − X β)′ (y − X β) + β′ (DD)−1 β

ν
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LASSO: Theory

Easier to draw from 1
τ2
i
for i = 1, ..,K as posterior conditionals are

independent of one another and with inverse Gaussian distributions.
Inverse Gaussian, IG (., .), is rarely used in econometrics.
Standard ways for drawing from IG exist (all we need for MCMC)

p
(

1
τ2
i
|y , β, h,λ

)
is IG (c i , d i ) with d = λ2

c i =

√
λ2

hβ2
i

Need prior for λ, convenient to use λ2 ∼ G
(

µ
λ
, νλ

)
With this p

(
λ2|y , τ

)
is G (µλ, νλ) with

νλ = νλ + 2K

µλ =
νλ + 2K

2∑K
i=1 τ2

i + νλ
µ

λ
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LASSO: Application

Again we will use our cross-country growth data set

All we need to choice are prior hyperparameters: µ
λ
= 0.05 and

νλ = 1.

Relatively non-informative choice

MCMC algorithm is run for 10, 000 burn in draws followed by
100, 000 included draws.

In addition to regression coefficient results, tables present results for
τi for i = 1, ..,K .

To gauge degree of shrinkage in LASSO prior, remember:

prior standard deviation for a regression coefficient is στi

We find E (σ|y) = 0.0071
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LASSO: Application

We find similar results to SSVS and BMA

Using rule of thumb where we select variables with posterior means
two posterior standard deviations from zero select nine explanatory
variables.

These variables are also selected by SSVS and BMS.

LASSO is doing a very good job at shrinking unimportant variables
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Posterior Results for Regression Coefficients with LASSO Prior

(Means and standard deviations of regression coeffs multiplied by 100)

Explanatory Variable E (τi |y) Posterior Mean St. Dev.

Primary School Enrolment 0.293 0.237 0.215

Life expectancy 0.932 1.218 0.182

GDP level in 1960 0.901 −1.144 0.109

Fraction GDP in Mining 0.429 0.303 0.058

Degree of Capitalism 0.158 0.094 0.110

No. Years Open Economy 0.578 0.509 0.084

% Pop. Speaking English 4× 10−4 −6× 10−5 0.003

% Pop. Speak. For. Lang. 0.122 0.069 0.093

Exchange Rate Distortions 6× 10−4 −1× 10−4 0.004

Equipment Investment 0.581 0.511 0.081

Non-equipment Investment 0.190 0.118 0.124
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Posterior Results for Regression Coefficients with LASSO Prior

(Means and standard deviations of regression coeffs multiplied by 100)

Explanatory Variable E (τi |y) Posterior Mean St. Dev.

St. Dev. of Black Mkt. Prem. 5× 10−4 −9× 10−5 0.003

Outward Orientation 5× 10−4 −9× 10−4 0.004

Black Market Premium 6× 10−4 −9× 10−5 0.004

Area 3× 10−4 4× 10−5 0.001

Latin America 0.005 0.002 0.017

Sub-Saharan Africa 3× 10−4 −1× 10−5 0.002

Higher Education Enrolment 6× 10−4 −1× 104 0.005

Public Education Share 3× 10−4 2× 10−5 0.001

Revolutions and Coups 0.001 3× 10−4 0.047

War 5× 10−4 1× 10−4 0.002
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Posterior Results for Regression Coefficients with LASSO Prior

Explanatory Variable τi Posterior Mean St. Dev.

Political Rights 5× 10−4 3× 10−5 0.002

Civil Liberties 3× 10−4 5× 10−5 0.002

Latitude 7× 10−4 2× 10−4 0.003

Age 3× 10−4 1× 10−5 0.001

British Colony 4× 10−4 2× 10−5 0.001

Fraction Buddhist 0.436 0.314 0.077

Fraction Catholic 0.373 0.253 0.130

Fraction Confucian 0.645 0.617 0.062

Ethnolinguistic Fractionalization 0.001 4× 10−4 0.004

French Colony 0.075 0.039 0.071
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Posterior Results for Regression Coefficients with LASSO Prior

Explanatory Variable τi Posterior Mean St. Dev.

Fraction Hindu 8× 10−4 2× 10−4 0.004

Fraction Jewish 6× 10−4 1× 10−4 0.002

Fraction Muslim 0.671 0.662 0.087

Primary Exports 6× 10−4 −6× 10−5 0.004

Fraction Protestant 0.002 −9× 10−4 0.013

Rule of Law 0.002 8× 10−4 0.009

Spanish Colony 0.007 0.003 0.021

Population Growth 0.002 5× 10−4 0.007

Ratio Workers to Population 0.001 1× 10−4 0.002

Size of Labor Force 0.349 0.217 0.057
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Summary

Applications involving Big Data are proliferating in economics

In the lecture on regression, we showed how BMA can be used to
surmount over-parameterization problems

Challenges with BMA largely computational: How do we handle 2K

models?

An answer was MC3

The approaches in this lecture turn model space problem (involving
marginal likelihoods, etc.) into estimation problem

SSVS and LASSO are two important such methods

Estimate one model (using hierarchical prior of particular form) and
let it do model selection or model averaging

These are just two of many such methods (hot area of literature)

Here we have used them with regression, later we will return to them
with VARs
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