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Introduction

Last lecture discussed machine learning methods with large numbers
of variables

Machine learning methods can be used in non-linear and
non-parametric problems where form of relationship between y and X
is unknown

y = f (X ) + ε

Don’t know form of f (.)

These two areas sound different but are similar: large numbers of
parameters

Lots of potential explanatory variables in a regression (want
”machine” to sort through them all and find important ones)

Lots of potential ways that f (.) can be nonlinear (want ”machine” to
find specific ones)
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Introduction

Bayesian nonparametric methods have mostly been used in
cross-sectional regression contexts, but recent interest in using
nonparametric VARs for forecasting

Why?

Realization that existing choices for f (.) such as linear, regime
switching, structural break, TVP may not be rich enough

Times of great turbulence (financial crisis, covid-19 pandemic) might
be better to model nonparametrically

They win many forecasting ”horse races”

Bayesian nonparametrics is a large and growing field, this lecture is
only a brief introduction to two of the most popular methods

BART: Bayesian additive regression trees

Gaussian processes
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BART: Bayesian Additive Regression Trees

Idea: BART classifies observations into different groups each of which
has same fitted/predicted value for yt

yt = f (Xt) + ε

BART figures out f (.) using regression trees

X might contain many variables (Big Data) or might contain few, but
need machine learning method since many possible types of
nonlinearity

BART is Bayesian way of working with regression trees, non-Bayesian
methods with names like ”random forests” also very popular

Many other Bayesian non-parametric or similar approaches (e.g.
Dirichlet mixtures of Normals)
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An Introduction to BART

BART approximates each f (Xt) as follows:

f (Xt) =
S

∑
s=1

gs(Xt |Ts , µs),

Ts are tree structures

µs are tree-specific terminal nodes

S denotes the total number of trees used.

Dimension of µs is denoted by bs which depends on the complexity of
the tree

Note that BART involves adding up different trees (this is the ”A” in
BART)

But what is a regression tree?
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Intuition of a Regression Tree

Explain idea of BART for a single tree (suppress s subscripts)

Conventional regression: For every value for X produces a fitted value
for y

BART does same thing, but in different way

Splitting rule: Divides space of X into different intervals each of
which has same fitted value for y (internal nodes, branches of tree)

Fitted values are called terminal nodes (or leaves of the tree)
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Intuition of a Regression Tree

Terminal nodes depend on sets Ar :

g(X ;T , µ) = µr , if X ∈ Ar , r = 1, . . . , b.

Splitting rules take the form {X ∈ Ar} or {X ̸∈ Ar}
Each splitting rule depends on whether an explanatory variable is
above/below threshold

Illustrate using a single tree using a specific data set, don’t worry
about data details (regression with 6 variables, XGDP is GDP growth,
XIP industrial production growth, etc.)
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Interpreting a Regression Tree

Tree organized with condition (e.g. XIP(t − 1) < −16.96) at top of
every split

Rule: If condition holds take the left branch, else take the right branch

At the bottom are terminal nodes = leaves = fitted values for the
dep. var.

Example: rightmost leaf is 1.594

Observations which have XIP(t − 1) >= −16.96 and
XGP(t − 1) >= 1.392 and XIP(t − 1) >= 1.774

Fitted value for GDP growth for observations with last month’s
industrial production growth in interval [−16.96, 1.774] and last
month’s GDP growth above −1.382 is 1.594.

n = 19 means there are 19 observations that choose this node
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Example of a Regression Tree

|
XIP(t−1)< −16.96

XGDP(t−1)< −1.392

XPMI(t−5)>=0.01317

XIP(t−2)< −3.424

XGDP(t−1)>=−4.687

XIP(t−1)< 1.774

XESI(t−1)< 0.8986

XIP(t−1)< −1.61

−23.96
n=1

−9.588
n=2

−5.114
n=3

−1.825
n=5

2.447
n=1

−1.018
n=9

0.246
n=99

0.833
n=39

1.594
n=19
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Properties of Regression Trees

Everything in the tree is estimated by algorithm

Values of terminal nodes

Values of internal nodes (i.e. Choice of variables and thresholds in
splitting conditions)

The number of splits that occur (useful with correlated explanatory
variables)

Number of variables included is 6, but some never appear in internal
nodes (loosely speaking, they are ”insignificant”)

BART very flexible non-parametric (black box) algorithm

Illustration is for one regression tree, BART adds up many gaining
even more flexibility

Empirically, often find adding many simple trees (”weak learners”)
works better than using one more complicated tree
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Prior Shrinkage in BART

Even a single regression tree can over-fit the data

In theory, can fit perfectly, each observation gets own leaf set equal to
actual value of y for that observation

With regression trees need to avoid this through ”regularization”
which, for the Bayesian, means a prior

I will provide informal description and motivation of the standard
BART prior (see readings for details)

Complete, more technical reading, is Chipman, George and McCulloch
(2010, Annals of Applied Statistics), ”BART: Bayesian Additive
Regression Trees”

Includes recommendations for default prior hyperparameter values
which are commonly used
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Prior Shrinkage in BART: The Number of Leaves on the
Tree

Trees with too many leaves (terminal nodes) can overfit

Number of leaves depends on number of branches (internal nodes)

let d = depth of tree (number of times a node is a splitting rule
instead of a terminal node)

Prior prob. that a node will split (not a terminal node) is:

a(1+ d)−b

Decreasing in d implies deep trees unlikely (prior belief that tree is
weak learner)

Prior hyperparameters a and b can be chosen to reflect prior beliefs

Chipman et al (2010) provide default recommendations a = 0.95 and
b = 2 that are widely used
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Prior Shrinkage in BART: Internal and Terminal Nodes

Regression tree involves splitting rules (e.g. XIP(t − 1) < −16.96)
which involve both a variable (XIP(t − 1)) and a value (−16.96)

Prior over variables: Uniform (each variable equally likely to be in
internal node)

Prior over values: Uniform over the range of possible values variable
can take (e.g. different percentiles of distribution of the variable)

Chipman et al recommend scaling dependent variable to lie in interval
[−0.5, 0.5], hence expect terminal nodes (fitted values) to lie in
interval

Prior for terminal node (µ) is

N(0, σµ)

where σµ is prior hyperparmeter

Default recommendation 1
4
√
S
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Prior Shrinkage in BART: Summary

Default BART prior of Chipman et al (2010) is automatic (the
researcher does not have to choose prior hyperparameters)

Default choices have worked well in wide variety of statistical
applications

What about S (number of trees)?

Can treat as unknown parameter (but increases computational
burden)?

Chipman et al. ”fast and expedient” advice is to set S large (e.g.
S = 200) but experiment with a few different choices just to make
sure results are robust to choice of S

They say: ”Our experience has been that as S is increased, starting
with S = 1, the predictive performance of BART improves
dramatically until at some point it levels off and then begins to very
slowly degrade for large values of S .”
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Computation in BART

I will provide intuitive description of the MCMC algorithm used to do
Bayesian inference with BART

But there are excellent, easy to use, BART packages in R (as easy as
running a standard regression model, no coding required)

All you need to do is download R + RStudio and click through one of
the many online tutorials available

R is as easy to use as Matlab and have similar structures so if you
know one you are halfway to knowing the other

You can treat both BART model and BART computation as black
boxes where all is done automatically (the ”machine” does it all)

I would encourage you to look into these R packages if you wish to
use BART in future research
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Informal Description of Computation in BART

Metropolis-Hastings (M-H) algorithm used with BART

Shares some similarities to MC 3

Remember M-H algorithms involve a candidate generating density
and an acceptance probability

Candidate draws are taken and then accepted with a certain
probability (else they are rejected)

Acceptance probability for BART is easy

Key component is p(y |X ,T1, µ1, ..,TS , µS )

But this is just a Normal density (given a draw of the tree structures
and terminal nodes, you have a draw of f (X ) and thus just use form
of nonlinear regression model)

I will say no more about acceptance probabilities
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Generating Candidate Trees

Remember the random walk M-H algorithm: candidate values of
parameters generated based on taking one step away from current
parameter draw

Rememer MC 3: candidate models drawn by adding/deleting one
explanatory variable from the current model draw

M-H for BART has similar intuition: Take current draw of the tree
and generate candidate by either

Grow (split current leaf into two leaves)

Prune (collapse adjacent leaves into one)

Change (change splitting rule in an interior node)

Swap (swap the splitting rules between two interior nodes)

Swapping step sometimes left out (as in code provided in computer
tutorial)
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Generating Candidate Nodes

Given tree structure, need to generate nodes

Won’t provide details or derivation, but conditional posteriors turn
out to be Normal so easy to do

Conditional posterior for error variance also standard

Bayesian Nonparametrics 18 / 24



Summary: MCMC for BART

I have sketched basic ideas of a basic MCMC algorithm for BART

Details in Chipman et al paper

Many variants on this algorithm proposed in the literature to speed it
up or get MCMC to converge faster

Many good BART packages written by statisticians allow you to use
BART without much programming skills

Here is a link which discusses one of them (bartMachine):

https://towardsdatascience.com/a-primer-to-bayesian-additive-
regression-tree-with-r-b9d0dbf704d

Kapelner and Bleich ”bartMachine: Machine Learning with Bayesian
Additive Regression Trees” has full description
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Brief Introduction to Gaussian Processes

Gaussian processes (GPs) are alternative nonparametric approach

BART classifies, GP smooths (similar to frequentist kernel methods)

Begin with nonlinear regression model:

yt = f (x t) + εt .

f is unknown and εt is Normal

Idea of GP: Let f = (f (x1), .., f (xT ))
′ – all the points on the

regression line — be a T − vector of unknown parameters

Another Big Data problem: equivalent to regression with a dummy
variable for each observation

How to estimate these T unknown parameters? Use Bayesian prior to
avoid over-fitting
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The GP Prior

The prior is:
f ∼ N (0,K ),

Key thing in GP prior is prior covariance K

T × T ”kernel” matrix with typical element k(x t , xτ)

Many choices for the kernel are possible

Bayesian Nonparametrics 21 / 24



The Gaussian kernel

One popular one is Gaussian kernel:

k(x t , xτ) = ξ × exp

(
−ϕ

2
||x t − xτ||2

)
,

ξ, ϕ denoting the hyperparameters of the kernel (we estimate these)

Idea: similar x t and xτ imply similar f (x t) and f (xτ)

Kernel measures distance between x t and xτ

Degree of smoothness of the function depends on ϕ.

Note that if x t = xτ, then Var(f (x t)) = ξ. This allows us to see
that ξ controls the variance of the function f
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Posterior for GP Regressions

Posterior results easy: Normal prior and Normal likelihood function

Equivalent to linear regression model with explanatory variables being
one dummy variable for each observation

Standard textbook results for Bayesian linear regression model hold
(conditional on ξ, ϕ)

MCMC algorithm draws from f given ξ, ϕ and ξ, ϕ given f

Latter involves only 2 parameters so several (simple) methods possible
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Summary

Bayesian nonparametric methods growing in popularity

Largely in research fields other than economics, but increasingly in
economics

Have performed well in forecasting horse races

This lecture covers two of the model popular methods

BART: classification algorithm

GP: smoothing algorithm
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