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Time Series Modelling for Empirical Macroeconomics

Vector Autoregressive (VAR) models popular way of summarizing
inter-relationships between macroeconomic variables.

Used for forecasting, impulse response analysis, etc.

Economy is changing over time. Is model in 1970s same as now?

Thus, time-varying parameter VARs (TVP-VARs) are of interest.

Great Moderation of business cycle leads to interest in modelling error
variances

TVP-VARs with multivariate stochastic volatility is our end goal.

Begin with Bayesian VARs

A common theme: These models are over-parameterized so need
shrinkage to get reasonable results (shrinkage = prior).
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Bayesian VARs

VAR(p) model:

yt = a0 +
p

∑
j=1

Ajyt−j + εt

yt is M × 1 vector

εt is M × 1 vector of errors

a0 is M × 1 vector of intercepts

Aj is an M ×M matrix of coefficients.

εt is i.i.d. N (0,Σ).
Exogenous variables or more deterministic terms can be added (but
we don’t to keep notation simple).
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Another way of writing VAR:

Let Y and E be T ×M matrices placing the T observations on each
variable in columns next to one another.

Then can write VAR as
Y = XA+ E

Notation: we will let α be KM × 1 vector of VAR coefficients, where
A is K ×M (i.e. K = Mp + 1 is number of explanatory variables in
each equation)

α = vec (A)
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Likelihood Function

Likelihood function can be derived and shown to be of a form that
breaks into two parts

First of these parts α given Σ and another for Σ

α|Σ, y ∼ N
(

α̂,Σ ⊗
(
X ′X

)−1
)

Σ−1 has Wishart form

Σ−1|y ∼ W
(
S−1,T −K −M − 1

)
where Â = (X ′X )−1 X ′Y is OLS estimate of A, α̂ = vec

(
Â
)
and

S =
(
Y − XÂ

)′ (
Y − XÂ

)
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Digression

Remember regression models had parameters β and σ2

There proved convenient to work with h = 1
σ2

In VAR proves convenient to work with Σ−1

In regression h typically had Gamma distribution

With VAR Σ−1 will typically have Wishart distribution

Wishart is matrix generalization of Gamma

Details see appendix to textbook.

If Σ−1 is W (C , c) then “Mean” is cC and c is degrees of freedom.

Note: easy to take random draws from Wishart.
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Prior Issue 1

VARs are not parsimonious models: α contains KM parameters

For a VAR(4) involving 5 dependent variables: 105 parameters

Large VARs with 100+ dependent variable: thousands (or tens of
thousands) of parameters

Macro data sets: number of observations on each variable might be a
few hundred.

Without prior information, hard to obtain precise estimates.

Features such as impulse responses and forecasts will tend to be
imprecisely estimated.

Desirable to “shrink” forecasts and prior information offers a sensible
way of doing this shrinkage.

Different priors do shrinkage in different ways.
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Prior Issue 2

Some priors lead to analytical results for the posterior and predictive
densities.

Other priors require MCMC methods (which raise computational
burden).

E.g. recursive forecasting exercise typically requires repeated
calculation of posterior and predictive distributions

In this case, MCMC methods can be very computationally demanding.

May want to go with not-so-good prior which leads to analytical
results, if ideal prior leads to slow computation.
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Prior Issue 3

Priors differ in how easily they can handle extensions of the VAR
defined above.

Restricted VARs: different equations have different explanatory
variables.

TVP-VARs: Allowing for VAR coefficients to change over time.

Heteroskedasticity

Such extensions typically require MCMC, so no need to restrict
consideration to priors which lead to analytical results in basic VAR
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The Minnesota Prior

The classic shrinkage priors developed by researchers (Litterman,
Sims, etc.) at the University of Minnesota and the Federal Reserve
Bank of Minneapolis.

They use an approximation which simplifies prior elicitation and
computation: replace Σ with an estimate, Σ̂.
Original Minnesota prior simplifies even further by assuming Σ to be a
diagonal matrix with σ̂ii = s2i
s2i is OLS estimate of the error variance in the i th equation

If Σ not diagonal, can use, e.g., Σ̂ = S
T .
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Minnesota prior assumes

α ∼ N (αMin,VMin)

Minnesota prior is way of automatically choosing αMin and VMin

Note: explanatory variables in any equation can be divided as:

own lags of the dependent variable

the lags of the other dependent variables

exogenous or deterministic variables
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αMin = 0 implies shrinkage towards zero (a nice way of avoiding
over-fitting).

When working with differenced data (e.g. GDP growth), Minnesota
prior sets αMin = 0

When working with levels data (e.g. GDP) Minnesota prior sets
element of αMin for first own lag of the dependent variable to 1.

Idea: Centred over a random walk. Shrunk towards random walk
(specification which often forecasts quite well)

Other values of αMin also used, depending on application.
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Prior mean: “towards what should we shrink?”

Prior variance: “by how much should we shrink?”

Minnesota prior: VMin is diagonal.

Let V i denote block of VMin for coefficients in equation i

V i ,jj are diagonal elements of V i

A common implementation of Minnesota prior (for r = 1, .., p lags):

V i ,jj =


a1
r2

for coefficients on own lags
a2σii
r2σjj

for coefficients on lags of variable j ̸= i

a3σii for coefficients on exogenous variables

Typically, σii = s2i .
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Problem of choosing
KM(KM+1)

2 elements of VMin reduced to simply
choosing , a1, a2, a3.

Property: as lag length increases, coefficients are increasingly shrunk
towards zero

Property: by setting a1 > a2 own lags are more likely to be important
than lags of other variables.
σii
σjj

adjusts for differences in the units that the variables are measured

in).

Minnesota prior seems to work well in practice.

Recent paper by Giannone, Lenza and Primiceri (in ReStat) develops
methods for estimating prior hyperparameters from the data
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Posterior Inference with Minnesota Prior

Simple analytical results involving only the Normal distribution.

α|y ∼ N
(
αMin,VMin

)
Formula for αMin and VMin can be obtained from standard sources
(including my Bayesian Econometric Methods second edition)
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Natural conjugate prior

A drawback of Minnesota prior is its treatment of Σ.
Ideally want to treat Σ as unknown parameter

Natural conjugate prior allows us to do this in a way that yields
analytical results.

But (as we shall see) has some drawbacks.
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An examination of likelihood function (see also similar derivations for
Normal linear regression model where Normal-Gamma prior was
natural conjugate) suggests VAR natural conjugate prior:

α|Σ ∼ N (α,Σ ⊗ V )

Σ−1 ∼ W
(
S−1, ν

)
α,V , ν and S are prior hyperparameters chosen by the researcher.

Noninformative prior: ν = 0 and S = V−1 = cI and let c → 0.
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Posterior when using natural conjugate prior

Posterior has analytical form:

α|Σ, y ∼ N
(
α,Σ ⊗ V

)
Σ−1|y ∼ W

(
S
−1

, ν
)

Formulae for S and ν available in standard sources
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Remember: in regression model joint posterior for (β, h) was
Normal-Gamma, but marginal posterior for β had t-distribution

Same thing happens with VAR coefficients.

Marginal posterior for α is a multivariate t-distribution.

Posterior mean is α

Degrees of freedom parameter is ν

Posterior covariance matrix:

var (α|y) = 1

ν −M − 1
S ⊗ V

Posterior inference can be done using (analytical) properties of
t-distribution.

Predictive inference can also be done analytically (for one-step ahead
forecasts)
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Problems with Natural Conjugate Prior

Natural conjugate prior has great advantage of analytical results, but
has some restrictive properties that can cause problems in some
applications.

Just out in 2022: ”Asymmetric conjugate priors for large Bayesian
VARs” in Quantitative Economics by Joshua Chan

New version of a conjugate prior which surmounts some of the
problems I am about to list

To make problems concrete consider a macro example:

The VAR involves variables such as output growth and the growth in
the money supply

Researcher wants to impose the neutrality of money.

Implies: coefficients on the lagged money growth variables in the
output growth equation are zero (but coefficients of lagged money
growth in other equations would not be zero).
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Problem 1: Cannot simply impose neutrality of money restriction.

The unrestricted VAR means each equation has the same explanatory
variables (p lags of all of the dependent variables)

But can show that, if we relax this assumption, and allow for different
equations to have different explanatory variables, analytical results are
not available
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Problem 2: Cannot “almost impose” neutrality of money restriction
through the prior.

Cannot set prior mean over neutrality of money restriction and set
prior variance to very small value.

To see why, let individual elements of Σ be σij .

Prior covariance matrix has form Σ ⊗ V

This implies prior covariance of coefficients in equation i is σiiV .

Thus prior covariance of the coefficients in any two equations must be
proportional to one another.

So can “almost impose” coefficients on lagged money growth to be
zero in ALL equations, but cannot do it in a single equation.

Note also that Minnesota prior form VMin is not consistent with
natural conjugate prior.
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Other Bayesian VAR Priors

Many other Bayesian VAR priors proposed (not time to cover here)

Independent Normal-Wishart prior, steady state VAR, priors based on
macro theory (e.g. DSGE prior)

Lots of machine learning VAR priors (e.g. Bayesian Lasso VAR)

BEAR Toolbox (available on course website) provides details of some
of them
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Stochastic Search Variable Selection (SSVS) in VARs

There are many approaches (often global-local shrinkage priors) which
seek parsimony/shrinkage in VARs, take SSVS as an example

Remember: basic idea for a VAR coefficient, αj

SSVS is hierarchical prior, mixture of two Normal distributions:

αj |γj ∼ (1− γj )N
(
0, κ2

0j

)
+ γjN

(
0, κ2

1j

)
γj is 0 or 1

γj = 1 then αj has prior N
(
0, κ2

1j

)
γj = 0 then αj has prior N

(
0, κ2

0j

)
Prior is hierarchical since γj is unknown parameter and estimated in a
data-based fashion.

κ2
0j is “small” (so coefficient is shrunk to be virtually zero)

κ2
1j is “large” (implying a relatively noninformative prior for αj).
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Gibbs Sampling with the SSVS Prior

SSVS prior for VAR coefficients, α, can be written as:

α|γ ∼ N (0,DD)

γ is a vector with elements γj ∈ {0, 1},
D is diagonal matrix with (j , j)th element dj :

dj =

{
κ0j if γj = 0
κ1j if γj = 1

“default semi-automatic approach” to selecting κ0j and κ1j

Set κ0j = c0
√

v̂ar(αj ) and κ1j = c1
√

v̂ar(αj )

v̂ar(αj ) is estimate from an unrestricted VAR

E.g. OLS or a preliminary Bayesian estimate from a VAR with
noninformative prior

Constants c0 and c1 must have c0 ≪ c1 (e.g. c0 = 0.1 and c1 = 10).
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We need prior for γ and a simple one is:

Pr (γj = 1) = q
j

Pr (γj = 0) = 1− q
j

q
j
= 1

2 for all j implies each coefficient is a priori equally likely to be

included as excluded.

Can use same Wishart prior for Σ−1

Note: George, Sun and Ni also show how to do SSVS on off-diagonal
elements of Σ
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Gibbs sampler sequentially draws from p (α|y ,γ,Σ) , p (γ|y , α,Σ) and
p
(
Σ−1|y ,γ, α

)
α|y ,γ,Σ ∼ N(αα,V α)

Pr (γj = 1|y , α,Σ) = qj
Pr (γj = 0|y , α,Σ) = 1− qj

p
(
Σ−1|y ,γ, α

)
is Wishart

I won’t write out forumulae for all arguments in posterior (e.g. qj),
but they have simple forms
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Illustration of Bayesian VAR Methods in a Small VAR

Data set: standard quarterly US data set from 1953Q1 to 2006Q3.

Inflation rate ∆πt , the unemployment rate ut and the interest rate rt

yt = (∆πt , ut , rt)
′.

These three variables are commonly used in New Keynesian VARs.

We use unrestricted VAR with intercept and 4 lags
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We consider 6 priors:

Noninformative: Noninformative version of natural conjugate prior

Natural conjugate: Informative natural conjugate prior with
subjectively chosen prior hyperparameters

Minnesota: Minnesota prior

Independent Normal-Wishart: Independent Normal-Wishart prior with
subjectively chosen prior hyperparameters

SSVS-VAR: SSVS prior for VAR coefficients and Wishart prior for Σ−1

SSVS: SSVS on both VAR coefficients and error covariance
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Point estimates for VAR coefficients often are not that interesting,
but Table 1 presents them for 2 priors

With SSVS priors, Pr (γj = 1|y) is the “posterior inclusion
probability” for each coefficient, see Table 2

Model selection using Pr (γj = 1|y) > 1
2 restricts 25 of 39

coefficients to zero.
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Table 1. Posterior mean of VAR Coefficients for Two Priors

Noninformative SSVS - VAR

∆πt ut rt ∆πt ut rt
Intercept 0.2920 0.3222 -0.0138 0.2053 0.3168 0.0143

∆πt−1 1.5087 0.0040 0.5493 1.5041 0.0044 0.3950

ut−1 -0.2664 1.2727 -0.7192 -0.142 1.2564 -0.5648

rt−1 -0.0570 -0.0211 0.7746 -0.0009 -0.0092 0.7859

∆πt−2 -0.4678 0.1005 -0.7745 -0.5051 0.0064 -0.226

ut−2 0.1967 -0.3102 0.7883 0.0739 -0.3251 0.5368

rt−2 0.0626 -0.0229 -0.0288 0.0017 -0.0075 -0.0004

∆πt−3 -0.0774 -0.1879 0.8170 -0.0074 0.0047 0.0017

ut−3 -0.0142 -0.1293 -0.3547 0.0229 -0.0443 -0.0076

rt−3 -0.0073 0.0967 0.0996 -0.0002 0.0562 0.1119

∆πt−4 0.0369 0.1150 -0.4851 -0.0005 0.0028 -0.0575

ut−4 0.0372 0.0669 0.3108 0.0160 0.0140 0.0563

rt−4 -0.0013 -0.0254 0.0591 -0.0011 -0.0030 0.0007
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Table 2. Posterior Inclusion Probabilities for
VAR Coefficients: SSVS-VAR Prior

∆πt ut rt
Intercept 0.7262 0.9674 0.1029

∆πt−1 1 0.0651 0.9532

ut−1 0.7928 1 0.8746

rt−1 0.0612 0.2392 1

∆πt−2 0.9936 0.0344 0.5129

ut−2 0.4288 0.9049 0.7808

rt−2 0.0580 0.2061 0.1038

∆πt−3 0.0806 0.0296 0.1284

ut−3 0.2230 0.2159 0.1024

rt−3 0.0416 0.8586 0.6619

∆πt−4 0.0645 0.0507 0.2783

ut−4 0.2125 0.1412 0.2370

rt−4 0.0556 0.1724 0.1097
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Impulse Response Analysis

Impulse response analysis is commonly done with VARs

Given my focus on the Bayesian econometrics, as opposed to
macroeconomics, I will not explain in detail

Make standard identifying assumption which allows for the
interpretation of interest rate shock as monetary policy shock.
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Figures 2 and 3 present impulse responses of all variables to shocks

Use two priors: the noninformative one and the SSVS prior

Posterior median is solid line and dotted lines are 10th and 90th

percentiles.

Priors give similar results, but a careful examination reveals SSVS
leads to slightly more precise inferences (evidenced by a narrower
band between the 10th and 90th percentiles) due to the shrinkage it
provides.
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Impulse Responses for Noninformative Prior
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Impulse Responses for SSVS Prior
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Summary

Lecture began with summary of basic methods and issues which arise
with Bayesian VAR modelling and addressed questions such as:

Why is shrinkage necessary?

How should shrinkage be done?

With recent explosion of interest in large VARs, need for answers for
such questions is greatly increased

Many researchers now developing models/methods to address them
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