Introduction - State space methods are used for a wide variety of time series problems - They are important in and of themselves in economics (e.g. trend-cycle decompositions, structural time series models, dealing with missing observations, etc.) - Also time-varying parameter VARs (TVP-VARs) and stochastic volatility are state space models - DSGE models are state space models (DYNARE popular Bayesian code for estimation) - Advantage of state space models: well-developed set of MCMC algorithms for doing Bayesian inference Normal linear state space model: $$y_t = Z_t \beta_t + \varepsilon_t$$ where $$\beta_{t+1} = \beta_t + u_t$$ - TVP-VAR has Z_t containing lags of dependent variables and β_t being VAR coefficients - But unlike VAR of previous lecture, VAR coeffs are varying over time - In VAR assume ε_t to be i.i.d. $N(0, \Sigma)$ - In empirical macroeconomics, this is often unrealistic. - Want to have $var(\varepsilon_t) = \Sigma_t$ - This also leads to state space models. # The Normal Linear State Space Model - Fairly general version of Normal linear state space model: - Measurement equation: $$y_t = W_t \delta + Z_t \beta_t + \varepsilon_t$$ State equation: $$\beta_{t+1} = T_t \beta_t + u_t$$ - y_t and ε_t defined as for VAR - W_t is known $M \times p_0$ matrix (e.g. lagged dependent variables or explanatory variables with constant coefficients) - Z_t is known $M \times K$ matrix (e.g. lagged dependent variables or explanatory variables with time varying coefficients) - β_t is $k \times 1$ vector of states (e.g. VAR coefficients) - ε_t ind $N(0, \Sigma_t)$ - u_t ind $N(0, Q_t)$. - ε_t and u_s are independent for all s and t. - T_t is a $k \times k$ matrix (usually fixed, but sometimes not). - Key idea: for given values for δ , T_t , Σ_t and Q_t (called "system matrices") posterior simulators for β_t for t=1,...,T exist. - E.g. Carter and Kohn (1994, Btka), Fruhwirth-Schnatter (1994, JTSA), DeJong and Shephard (1995, Btka) and Durbin and Koopman (2002, Btka). - Precision based sampler of Joshua Chan (http://joshuachan.org/) - I will not present details of these (standard) algorithms - These algorithms involve use of methods called Kalman filtering and smoothing - Filtering = estimating a state at time t using data up to time t - Smoothing = estimating a state at time t using data up to time T - Notation: $\beta^t = (\beta_1', ..., \beta_t')'$ stacks all the states up to time t (and similar superscript t convention for other things) - Gibbs sampler: $p\left(\beta^T|y^T, \delta, T^T, \Sigma^T, Q^T\right)$ drawn use such an algorithm - $p\left(\delta|y^T, \beta^T, T^T, \Sigma^T, Q^T\right)$, $p\left(T^T|y^T, \beta^T, \delta, \Sigma^T, Q^T\right)$, $p\left(\Sigma^T|y^T, \beta^T, \delta, T^T, Q^T\right)$ and $p\left(Q^T|y^T, \beta^T, \delta, T^T, \Sigma^T\right)$ depend on precise form of model (typically simple since, conditional on β^T have a Normal linear model) - Typically restricted versions of this general model used - ullet TVP-VAR of Primiceri (2005, ReStud) has $\delta=$ 0, $T_t=I$ and $Q_t=Q$ # Example of an MCMC Algorithm - Special case $\delta=0$, $T_t=I$, $\Sigma_t=\Sigma$ and $Q_t=Q$ - Homoskedastic TVP-VAR of Cogley and Sargent (2001, NBER) - Need prior for all parameters - But state equation implies hierarchical prior for β^T : $$\beta_{t+1}|\beta_t, Q \sim N(\beta_t, Q)$$ • Formally: $$p\left(\beta^{T}|Q\right) = \prod_{t=1}^{T} p\left(\beta_{t}|\beta_{t-1},Q\right)$$ Hierarchical: since it depends on Q which, in turn, requires its own prior. - Note β_0 enters prior for β_1 . - ullet Need prior for eta_0 - Standard treatments exist. - E.g. assume $\beta_0 = 0$, then: $$\beta_1|Q \sim N(0, Q)$$ • Or Carter and Kohn (1994) simply assume β_0 has some prior that researcher chooses ullet Convenient to use Wishart priors for Σ^{-1} and Q^{-1} $$\Sigma^{-1} \sim W\left(\underline{S}^{-1}, \underline{\nu}\right)$$ $Q^{-1} \sim W\left({\underline{Q}^{-1}}$, ${\underline{ u}}_Q ight)$ • - Want MCMC algorithm which sequentially draws from $p\left(\Sigma^{-1}|y^T,\beta^T,Q\right)$, $p\left(Q^{-1}|y^T,\Sigma,\beta^T\right)$ and $p\left(\beta^T|y^T,\Sigma,Q\right)$. - For $p\left(\beta^T|y^T, \Sigma, Q\right)$ use standard algorithm for state space models (e.g. Carter and Kohn, 1994) - Can derive $p\left(\Sigma^{-1}|y^T,\beta^T,Q\right)$ and $p\left(Q^{-1}|y^T,\Sigma,\beta^T\right)$ using methods similar to those used in section on VAR independent Normal-Wishart model. - Conditional on β^T , measurement equation is like a VAR with known coefficients. - This leads to: $$\Sigma^{-1}|\mathbf{y}^{T}, \mathbf{\beta}^{T} \sim W\left(\overline{\mathbf{S}}^{-1}, \overline{\mathbf{v}}\right)$$ where $$\overline{\nu} = T + \underline{\nu}$$ $$\overline{S} = \underline{S} + \sum_{t=1}^{T} (y_t - W_t \delta - Z_t \beta_t) (y_t - W_t \delta - Z_t \beta_t)'$$ - Conditional on β^T , state equation is also like a VAR with known coefficients. - This leads to: $$Q^{-1}|y^T, eta^T \sim W\left(\overline{Q}^{-1}, \overline{ u}_Q\right)$$ where $$\overline{\nu}_Q = T + \underline{\nu}_Q$$ $$\overline{Q} = \underline{Q} + \sum_{t=1}^{T} (\beta_{t+1} - \beta_t) (\beta_{t+1} - \beta_t)'.$$ ### Nonlinear State Space Models - Normal linear state space model useful for empirical macroeconomists - E.g. trend-cycle decompositions, TVP-VARs, linearized DSGE models, etc. - Some models have y_t being a nonlinear function of the states (e.g. DSGE models which have not been linearized) - Increasing number of Bayesian tools for nonlinear state space models (e.g. the particle filter) - Here we will focus on stochastic volatility ### Univariate Stochastic Volatility - Begin with y_t being a scalar (common in finance) - Stochastic volatility model: $$y_t = \exp\left(\frac{h_t}{2}\right)\varepsilon_t$$ $$h_{t+1} = \mu + \phi \left(h_t - \mu \right) + \eta_t$$ - ε_t is i.i.d. $N\left(0,1\right)$ and η_t is i.i.d. $N\left(0,\sigma_\eta^2\right)$. ε_t and η_s are independent. - This is state space model with states being h_t , but measurement equation is not a linear function of h_t - h_t is log of the variance of y_t (log volatility) - Since variances must be positive, common to work with log-variances - Note μ is the unconditional mean of h_t . - Initial conditions: if $|\phi| < 1$ (stationary) then: $$h_0 \sim N\left(\mu, rac{\sigma_\eta^2}{1-\phi^2} ight)$$ - if $\phi=1$, μ drops out of the model and However, when $\phi=1$, need a prior such as $h_0\sim N\left(\underline{h},\underline{V}_h\right)$ - e.g. Primiceri (2005) chooses \underline{V}_h using training sample # MCMC Algorithm for Stochastic Volatility Model - MCMC algorithm involves sequentially drawing from $p\left(h^T|y^T,\mu,\phi,\sigma_\eta^2\right)$, $p\left(\phi|y^T,\mu,\sigma_\eta^2,h^T\right)$, $p\left(\mu|y^T,\phi,\sigma_\eta^2,h^T\right)$ and $p\left(\sigma_\eta^2|y^T,\mu,\phi,h^T\right)$ - Last three standard forms based on results from Normal linear regression model and will not present here. - Several algorithms exist for $p\left(h^T|y^T, \mu, \phi, \sigma_\eta^2\right)$ - Here we describe a popular one from Kim, Shephard and Chib (1998, ReStud) - For complete details, see their paper. Here we outline ideas. Square and log the measurement equation: $$y_t^* = h_t + \varepsilon_t^*$$ - where $y_t^* = \ln(y_t^2)$ and $\varepsilon_t^* = \ln(\varepsilon_t^2)$. - Now the measurement equation is linear so maybe we can use algorithm for Normal linear state space model? - ullet No, since error is no longer Normal (i.e. $arepsilon_t^* = \ln\left(arepsilon_t^2 ight)$) - Idea: use mixture of different Normal distributions to approximate distribution of ε_t^* . Mixtures of Normal distributions are very flexible and have been used widely in many fields to approximate unknown or inconvenient distributions. $$p\left(\varepsilon_{t}^{*}\right) pprox \sum_{i=1}^{7} q_{i} f_{N}\left(\varepsilon_{t}^{*} | m_{i}, v_{i}^{2}\right)$$ - where $f_N\left(\varepsilon_t^*|m_i,v_i^2\right)$ is the p.d.f. of a $N\left(m_i,v_i^2\right)$ - since ε_t is N(0,1), ε_t^* involves no unknown parameters - Thus, q_i , m_i , v_i^2 for i=1,...,7 are not parameters, but numbers (see Table 4 of Kim, Shephard and Chib, 1998). • Mixture of Normals can also be written in terms of component indicator variables, $s_t \in \{1, 2, ..., 7\}$ $$\varepsilon_t^* | s_t = i \sim N(m_i, v_i^2)$$ $Pr(s_t = i) = q_i$ - MCMC algorithm does not draw from $p\left(h^T|y^T, \mu, \phi, \sigma_\eta^2\right)$, but from $p\left(h^T|y^T, \mu, \phi, \sigma_\eta^2, s^T\right)$. - But, conditional on s^T , knows which of the Normals ε_t^* comes from. - Result is a Normal linear state space model and familiar algorithm can be used. - Finally, need $p\left(s^T|y^T,\mu,\phi,\sigma_{\eta}^2,h^T\right)$ but this has simple form (see Kim, Shephard and Chib , 1998)