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Introduction

State space methods are used for a wide variety of time series
problems

They are important in and of themselves in economics (e.g.
trend-cycle decompositions, structural time series models, dealing
with missing observations, etc.)

Also time-varying parameter VARs (TVP-VARs) and stochastic
volatility are state space models

DSGE models are state space models (DYNARE popular Bayesian
code for estimation)

Advantage of state space models: well-developed set of MCMC
algorithms for doing Bayesian inference
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Normal linear state space model:

yt = Ztβt + εt

where
βt+1 = βt + ut

TVP-VAR has Zt containing lags of dependent variables and βt being
VAR coefficients

But unlike VAR of previous lecture, VAR coeffs are varying over time

In VAR assume εt to be i.i.d. N (0,Σ)
In empirical macroeconomics, this is often unrealistic.

Want to have var (εt) = Σt

This also leads to state space models.
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The Normal Linear State Space Model

Fairly general version of Normal linear state space model:

Measurement equation:

yt = Wtδ + Ztβt + εt

State equation:
βt+1 = Ttβt + ut

yt and εt defined as for VAR

Wt is known M × p0 matrix (e.g. lagged dependent variables or
explanatory variables with constant coefficients)

Zt is known M ×K matrix (e.g. lagged dependent variables or
explanatory variables with time varying coefficients)

βt is k × 1 vector of states (e.g. VAR coefficients)

εt ind N (0,Σt)
ut ind N (0,Qt).
εt and us are independent for all s and t.

Tt is a k × k matrix (usually fixed, but sometimes not).
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Key idea: for given values for δ, Tt , Σt and Qt (called “system
matrices”) posterior simulators for βt for t = 1, ..,T exist.

E.g. Carter and Kohn (1994, Btka), Fruhwirth-Schnatter (1994,
JTSA), DeJong and Shephard (1995, Btka) and Durbin and
Koopman (2002, Btka).

Precision based sampler of Joshua Chan (http://joshuachan.org/)

I will not present details of these (standard) algorithms

These algorithms involve use of methods called Kalman filtering and
smoothing

Filtering = estimating a state at time t using data up to time t

Smoothing = estimating a state at time t using data up to time T
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Notation: βt = (β′
1, .., β′

t)
′ stacks all the states up to time t (and

similar superscript t convention for other things)

Gibbs sampler: p
(

βT |yT , δ,TT ,ΣT ,QT
)
drawn use such an

algorithm

p
(
δ|yT , βT ,TT ,ΣT ,QT

)
, p
(
TT |yT , βT , δ,ΣT ,QT

)
,

p
(
ΣT |yT , βT , δ,TT ,QT

)
and p

(
QT |yT , βT , δ,TT ,ΣT

)
depend on

precise form of model (typically simple since, conditional on βT have
a Normal linear model)

Typically restricted versions of this general model used

TVP-VAR of Primiceri (2005, ReStud) has δ = 0,Tt = I and Qt = Q
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Example of an MCMC Algorithm

Special case δ = 0,Tt = I ,Σt = Σ and Qt = Q

Homoskedastic TVP-VAR of Cogley and Sargent (2001, NBER)

Need prior for all parameters

But state equation implies hierarchical prior for βT :

βt+1|βt ,Q ∼ N (βt ,Q)

Formally:

p
(

βT |Q
)
=

T

∏
t=1

p (βt |βt−1,Q)

Hierarchical: since it depends on Q which, in turn, requires its own
prior.
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Note β0 enters prior for β1.

Need prior for β0

Standard treatments exist.

E.g. assume β0 = 0, then:

β1|Q ∼ N (0,Q)

Or Carter and Kohn (1994) simply assume β0 has some prior that
researcher chooses
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Convenient to use Wishart priors for Σ−1 and Q−1

Σ−1 ∼ W
(
S−1, ν

)
Q−1 ∼ W

(
Q−1, νQ

)
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Want MCMC algorithm which sequentially draws from
p
(
Σ−1|yT , βT ,Q

)
, p
(
Q−1|yT ,Σ, βT

)
and p

(
βT |yT ,Σ,Q

)
.

For p
(

βT |yT ,Σ,Q
)
use standard algorithm for state space models

(e.g. Carter and Kohn, 1994)

Can derive p
(
Σ−1|yT , βT ,Q

)
and p

(
Q−1|yT ,Σ, βT

)
using methods

similar to those used in section on VAR independent Normal-Wishart
model.
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Conditional on βT , measurement equation is like a VAR with known
coefficients.

This leads to:
Σ−1|yT , βT ∼ W

(
S
−1

, ν
)

where
ν = T + ν

S = S +
T

∑
t=1

(yt −Wtδ − Ztβt) (yt −Wtδ − Ztβt)
′
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Conditional on βT , state equation is also like a VAR with known
coefficients.

This leads to:
Q−1|yT , βT ∼ W

(
Q

−1
, νQ

)
where

νQ = T + νQ

Q = Q +
T

∑
t=1

(βt+1 − βt) (βt+1 − βt)
′ .
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Nonlinear State Space Models

Normal linear state space model useful for empirical macroeconomists

E.g. trend-cycle decompositions, TVP-VARs, linearized DSGE
models, etc.

Some models have yt being a nonlinear function of the states (e.g.
DSGE models which have not been linearized)

Increasing number of Bayesian tools for nonlinear state space models
(e.g. the particle filter)

Here we will focus on stochastic volatility
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Univariate Stochastic Volatility

Begin with yt being a scalar (common in finance)

Stochastic volatility model:

yt = exp

(
ht
2

)
εt

ht+1 = µ + ϕ (ht − µ) + ηt

εt is i.i.d. N (0, 1) and ηt is i.i.d. N
(
0, σ2

η

)
. εt and ηs are

independent.

This is state space model with states being ht , but measurement
equation is not a linear function of ht
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ht is log of the variance of yt (log volatility)

Since variances must be positive, common to work with log-variances

Note µ is the unconditional mean of ht .

Initial conditions: if |ϕ| < 1 (stationary) then:

h0 ∼ N

(
µ,

σ2
η

1− ϕ2

)

if ϕ = 1, µ drops out of the model and However, when ϕ = 1, need a
prior such as h0 ∼ N (h,V h)

e.g. Primiceri (2005) chooses V h using training sample
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MCMC Algorithm for Stochastic Volatility Model

MCMC algorithm involves sequentially drawing from

p
(
hT |yT , µ, ϕ, σ2

η

)
, p
(

ϕ|yT , µ, σ2
η , h

T
)
, p
(

µ|yT , ϕ, σ2
η , h

T
)
and

p
(

σ2
η |yT , µ, ϕ, hT

)
Last three standard forms based on results from Normal linear
regression model and will not present here.

Several algorithms exist for p
(
hT |yT , µ, ϕ, σ2

η

)
Here we describe a popular one from Kim, Shephard and Chib (1998,
ReStud)

For complete details, see their paper. Here we outline ideas.
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Square and log the measurement equation:

y ∗t = ht + ε∗t

where y ∗t = ln
(
y2t
)
and ε∗t = ln

(
ε2t
)
.

Now the measurement equation is linear so maybe we can use
algorithm for Normal linear state space model?

No, since error is no longer Normal (i.e. ε∗t = ln
(
ε2t
)
)

Idea: use mixture of different Normal distributions to approximate
distribution of ε∗t .
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Mixtures of Normal distributions are very flexible and have been used
widely in many fields to approximate unknown or inconvenient
distributions.

p (ε∗t ) ≈
7

∑
i=1

qi fN
(
ε∗t |mi , v

2
i

)
where fN

(
ε∗t |mi , v

2
i

)
is the p.d.f. of a N

(
mi , v

2
i

)
since εt is N (0, 1), ε∗t involves no unknown parameters

Thus, qi ,mi , v
2
i for i = 1, .., 7 are not parameters, but numbers (see

Table 4 of Kim, Shephard and Chib, 1998).
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Mixture of Normals can also be written in terms of component
indicator variables, st ∈ {1, 2, .., 7}

ε∗t |st = i ∼ N
(
mi , v

2
i

)
Pr (st = i) = qi

MCMC algorithm does not draw from p
(
hT |yT , µ, ϕ, σ2

η

)
, but from

p
(
hT |yT , µ, ϕ, σ2

η , s
T
)
.

But, conditional on sT , knows which of the Normals ε∗t comes from.

Result is a Normal linear state space model and familiar algorithm can
be used.

Finally, need p
(
sT |yT , µ, ϕ, σ2

η , h
T
)
but this has simple form (see

Kim, Shephard and Chib , 1998)
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