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Introduction

@ State space methods are used for a wide variety of time series
problems

@ They are important in and of themselves in economics (e.g.
trend-cycle decompositions, structural time series models, dealing
with missing observations, etc.)

@ Also time-varying parameter VARs (TVP-VARs) and stochastic
volatility are state space models

@ DSGE models are state space models (DYNARE popular Bayesian
code for estimation)

@ Advantage of state space models: well-developed set of MCMC
algorithms for doing Bayesian inference
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@ Normal linear state space model:

Ye = ZPt + &t
@ where

Biy1 = Pe+ us

TVP-VAR has Z; containing lags of dependent variables and B; being
VAR coefficients

But unlike VAR of previous lecture, VAR coeffs are varying over time
In VAR assume €, to be i.i.d. N (0,X)

In empirical macroeconomics, this is often unrealistic.

Want to have var (e;) = X

This also leads to state space models.
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The Normal Linear State Space Model

o Fairly general version of Normal linear state space model:
@ Measurement equation:

ye = Wio + Zt,Bt + &

o State equation:
Br+1 = TePr + ut
@ y; and g defined as for VAR
e W, is known M X pg matrix (e.g. lagged dependent variables or
explanatory variables with constant coefficients)
@ Z; is known M x K matrix (e.g. lagged dependent variables or
explanatory variables with time varying coefficients)
Bt is k x 1 vector of states (e.g. VAR coefficients)
et ind N (0, %)
ur ind N (0, Q).
€;: and us are independent for all s and t.
T: is a k X k matrix (usually fixed, but sometimes not).
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o Key idea: for given values for 6, Ty, £; and Q; (called “system
matrices”) posterior simulators for B, for t =1, .., T exist.

e E.g. Carter and Kohn (1994, Btka), Fruhwirth-Schnatter (1994,
JTSA), DeJong and Shephard (1995, Btka) and Durbin and
Koopman (2002, Btka).

@ Precision based sampler of Joshua Chan (http://joshuachan.org/)
@ | will not present details of these (standard) algorithms

@ These algorithms involve use of methods called Kalman filtering and
smoothing

o Filtering = estimating a state at time t using data up to time t

Smoothing = estimating a state at time t using data up to time T
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Notation: Bt = (B, .., B;)’ stacks all the states up to time t (and
similar superscript t convention for other things)

Gibbs sampler: p (ﬁT|yT,5, TT 2T, QT) drawn use such an
algorithm

p (5‘}/7—, ‘BT, TT,ZT, QT)y p (TT’}/T, ﬁTy(stTy QT),
p(ZT|yT,BT,6, TT,QT) and p (QT|yT,B7,6, TT,LT) depend on
precise form of model (typically simple since, conditional on ,BT have
a Normal linear model)

Typically restricted versions of this general model used
@ TVP-VAR of Primiceri (2005, ReStud) has 6 =0, T; =/ and Q; = Q
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Example of an MCMC Algorithm

Special case 6 =0, Ty =, Z; =% and Q; = Q
Homoskedastic TVP-VAR of Cogley and Sargent (2001, NBER)

Need prior for all parameters

But state equation implies hierarchical prior for ﬁT:

ﬁt+1|,3t, Q~N (,Bt Q)

Formally:
-
p(T1Q) =ITp(Blpis. Q)

@ Hierarchical: since it depends on @ which, in turn, requires its own
prior.
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Note B¢ enters prior for Bi.
Need prior for By

Standard treatments exist.

E.g. assume Bo = 0, then:

B1|@ ~ N (0, Q)

Or Carter and Kohn (1994) simply assume o has some prior that
researcher chooses
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e Convenient to use Wishart priors for 2~ and Q1
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o Want MCMC algorithm which sequentially draws from
p(ZMyT.BT.Q), p(Q 1y X, BT) and p (B |yT. %, Q).

e Forp (,BT]yT, 2, Q) use standard algorithm for state space models
(e.g. Carter and Kohn, 1994)

o Can derive p(Z7y",B7,Q) and p (Q !y, %, BT) using methods
similar to those used in section on VAR independent Normal-Wishart
model.
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@ Conditional on ,BT, measurement equation is like a VAR with known
coefficients.

@ This leads to:

@ where
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@ Conditional on ,BT, state equation is also like a VAR with known
coefficients.

@ This leads to: )
QM yT.pT ~ W (Q 7o)
@ where

-
:Q Z 5t+1 ,Bt+1 ﬁ)-
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Nonlinear State Space Models

@ Normal linear state space model useful for empirical macroeconomists

e E.g. trend-cycle decompositions, TVP-VARs, linearized DSGE
models, etc.

@ Some models have y; being a nonlinear function of the states (e.g.
DSGE models which have not been linearized)

@ Increasing number of Bayesian tools for nonlinear state space models
(e.g. the particle filter)

@ Here we will focus on stochastic volatility
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Univariate Stochastic Volatility

Begin with y; being a scalar (common in finance)

Stochastic volatility model:

_ he
ye=exp | o | e

hevi=p+¢ (he —p) +1¢

ecisiid. N(0,1) and 5 is iid. N (o,ag). e¢ and 75 are
independent.

This is state space model with states being h;, but measurement
equation is not a linear function of h;
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he is log of the variance of y; (log volatility)
Since variances must be positive, common to work with log-variances

Note y is the unconditional mean of h.

Initial conditions: if |p| < 1 (stationary) then:

0.2
hoNN “I/ll 4)2

e if ¢ =1, u drops out of the model and However, when ¢ = 1, need a
prior such as hg ~ N (h, V)

@ e.g. Primiceri (2005) chooses V/, using training sample
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MCMC Algorithm for Stochastic Volatility Model

o MCMC algorithm involves sequentially drawing from

p (hTIyT, "o, 0,?) P (cP\yT, 1oz, hT>, p <;1|yT, ¢, 02, hT) and
p (fﬂ?\yT' o, hT)

Last three standard forms based on results from Normal linear
regression model and will not present here.

Several algorithms exist for p (hT\yT, U, P, (7,?)

@ Here we describe a popular one from Kim, Shephard and Chib (1998,
ReStud)

For complete details, see their paper. Here we outline ideas.
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Square and log the measurement equation:

y::ht“i_gt

where y; = In (y?) and € = In (€2).
Now the measurement equation is linear so maybe we can use
algorithm for Normal linear state space model?

. . . x 2
No, since error is no longer Normal (i.e. €f = In (€3))

Idea: use mixture of different Normal distributions to approximate
distribution of 7.
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@ Mixtures of Normal distributions are very flexible and have been used
widely in many fields to approximate unknown or inconvenient
distributions.

7
p(er) ~ Y qify (€5|mi v7)
i=1
@ where fy (81'i|m,-, v,2) is the p.d.f. of a N (m,-, v-2)
@ since g; is NV (0, 1), €} involves no unknown parameters

e Thus, g;, m;, v,.2 for i =1,..,7 are not parameters, but numbers (see
Table 4 of Kim, Shephard and Chib, 1998).
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@ Mixture of Normals can also be written in terms of component
indicator variables, s; € {1,2,..,7}

ehlse =i~ N (mj, v?)
Pr(ss=1)=gq;
e MCMC algorithm does not draw from p (hT|yT, y,<p,(r§>, but from
p (hTIyT'WP' U%ST)-
@ But, conditional on s7, knows which of the Normals g} comes from.

@ Result is a Normal linear state space model and familiar algorithm can
be used.

o Finally, need p (sT\yT, 1,02, hT) but this has simple form (see
Kim, Shephard and Chib , 1998)
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