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Introduction

Macro researchers usually have dozens or hundreds of time series
variables to work with

This has led to large VARs

Bayesian priors used to surmount challenge of over-fitting

Priors are on parameters

Instead of using prior shrinkage on parametrers, why not
compress/shrink the data itself

Work with smaller, more parsimonious model, with compressed data

This is the idea motivating factor models

These are state space models so Bayesian inference straightforward
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The Static Factor Model

yt is M × 1 vector of time series variables

M is very large

yit denote a particular variable.

Simplest static factor model:

yt = λ0 + λft + εt

ft is q × 1 vector of unobserved latent factors (where q << M)

Factors contain information extracted from all the M variables.

Same ft occurs in every equation for yit for i = 1, ...,M

But different coefficients (λ is an M × q matrix of so-called factor
loadings).
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Note that restrictions are necessary to identify the model

Common to say εt is i.i.d. N (0,D) where D is diagonal matrix.

Implication: ε it is pure random shock specific to variable i ,
co-movements in the different variables in yt arise only from the
factors.

Note also that λft = λCC−1ft which shows we need identification
restriction for factors too.

Different models arise from different treatment of factors.

Simplest is: ft ∼ N (0, I )

This can be interpreted as a state equation for “states” ft

Factor models are state space models — so our MCMC tools of for
state space methods can be used.
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The Dynamic Factor Model (DFM)

In macroeconomics, usually need to extend static factor model to
allow for the dynamic properties which characterize macroeconomic
variables.

A typical DFM:

yit = λ0i + λi ft + ε it
ft = Φ1ft−1 + ..+ Φpft−p + εft

ft is as for static model

λi is 1× q vector of factor loadings.

Each equation has its own intercept, λ0i .

ε it is i.i.d. N
(
0, σ2

i

)
ft is VAR with εft being i.i.d. N

(
0,Σf

)
Note: usually ε it is autocorrelated (easy extension, omitted here for
simplicity)
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Replacing Factors by Estimates: Principal Components

Proper Bayesian analysis of the DFM treats ft as vector of unobserved
latent variables.

Before doing this, we note a simple approximation.

The DFM has similar structure to regression model:

yit = λ0i + λ̃0i ft + ..+ λ̃pi ft−p + ε̃it

If ft were known we could use Bayesian methods for the multivariate
Normal regression model to estimate or forecast with the DFM.

Principal components methods to can be used to approximate ft .

Precise details of how principal components is done provided many
places
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Treating Factors as Unobserved Latent Variables

DFM is a Normal linear state space model so use Bayesian MCMC
methods for state space models

A bit more detail on MCMC algorithm:

Conditional on the model’s parameters, Σf ,Φ1, ..,Φp,λ0i ,λi , σ2
i for

i = 1, ..,M, use (e.g.) Carter and Kohn algorithm to draw ft

Conditional on the factors, measurement equations are just M Normal
linear regression models.

Since ε it is independent of ε it for i ̸= j , posteriors for λ0i ,λi , σ2
i in

the M equations are independent over i

Hence, the parameters for each equation can be drawn one at a time
(conditional on factors).

Finally, conditional on the factors, the state equation is a VAR

Any of the priors for Bayesian VARs discussed before can be used.
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The Factor Augmented VAR (FAVAR)

DFMs are good for forecasting (extract all information in huge
number of variables)

VARs are good for macroeconomic policy (e.g. impulse responses).

Why not combine DFMs and VARs together to get model which can
do both?

FAVAR results

Bernanke, Boivin and Eliasz (2005, QJE) is pioneering paper
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FAVAR modifies DFM by adding other explanatory variables:

yit = λ0i + λi ft + γi rt + ε it

rt is kr × 1 vector of observed variables of key interest.

E.g. Bernanke, Boivin and Eliasz (2005) set rt to be the Fed Funds
rate (monetary policy instrument)

All other assumptions are same as for the DFM.

Note: by treating rt in this way, we can isolate a “monetary policy
shock” and calculate impulse responses
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FAVAR state equation extends DFM state equation to include rt :(
ft
rt

)
= Φ̃1

(
ft−1

rt−1

)
+ ..+ Φ̃p

(
ft−p

rt−p

)
+ ε̃ft

where all assumptions are same as DFM with extension that ε̃ft is

i.i.d. N
(
0, Σ̃f

)
MCMC is very similar to that for the DFM and will not be described
here.

Similar ideas:

Normal linear state space algorithms can draw ft

Measurement equation is series of regressions (conditional on factors)

The state equation is a VAR (conditional of factors)
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The TVP-FAVAR

With VARs: began with constant parameter model

then we said it is good to allow the VAR coefficients to vary over
time: homoskedastic TVP-VAR

then we said good to allow for multivariate stochastic volatility:
heteroskedastic TVP-VAR

Can do the same with FAVARs

Note: just as with TVP-VARs, TVP-FAVARs can be
over-parameterized and careful incorporation of prior information or
the imposing of restrictions (e.g. only allowing some parameters to
vary over time) can be important in obtaining sensible results.
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A TVP-FAVAR is just like a FAVAR but with t subscripts on
parameters:

yit = λ0it + λit ft + γitrt + ε it ,(
ft
rt

)
= Φ̃1t

(
ft−1

rt−1

)
+ ..+ Φ̃pt

(
ft−p

rt−p

)
+ ε̃ft

All each ε it to follow univariate stochastic volatility process

var
(

ε̃ft

)
= Σ̃f

t has multivariate stochastic volatility process of the

form used in Primiceri (2005).

Finally, the coefficients (for i = 1, ..,M) λ0it ,λit ,γit , Φ̃1t , .., Φ̃pt are
allowed to evolve according to random walks (i.e. state equations of
the same form as in the TVP-VAR complete the model).

All other assumptions are the same as for the FAVAR.
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Bayesian Inference in the TVP-FAVAR

I will not provide details of MCMC algorithm

Note only it adds more blocks to the MCMC algorithm for the FAVAR.

These blocks are all of forms discussed in previous lectures.

E.g. error variances in measurement equations drawn using the
univariate stochastic volatility algorithm of Kim, Shephard and Chib
(1998).

Multivariate stochastic volatility algorithm of Primiceri (2005) can be
used to draw Σ̃f

t .

The coefficients λ0it ,λit ,γit , Φ̃1t , .., Φ̃pt are all drawn using algorithm
for Normal linear state space model
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Empirical Illustration of the FAVAR and TVP-FAVAR

115 quarterly US macroeconomic variables spanning 1959Q1 though
2006Q3.

Transform all variables to be stationarity.

What variables to put in rt?

Inflation, unemployment and the interest rate.

FAVAR is same as VAR from previous illustrations, but augmented
with factors, ft

We use 2 factors and 2 lags in state equation

Identify impulse responses to a monetary policy shock

Solid lines are posterior medians

Dashed lines in some of following figures denote credible intervals
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Impulse Responses of Main Variables
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Impulse Responses of Selected Other Variables
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Now TVP-FAVAR

Illustrate time varying volatility of equations for rt and factor
equations

Impulse responses at three different time periods
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Time Varying Volatilties in Some Key Equations

Factor Models 18 / 21



Impulse Responses of Main Variables to Monetary Policy
Shock
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Impulse Responses of Selected Other Variables
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Summary

Factor methods are an attractive way of modelling when the number
of variables is large

DFMs often are good for forecasting

FAVARs good for macroeconomic policy (e.g. to do impulse response
analysis)

Recently TVP versions of these models have been developed

Bayesian inference in TVP-FAVAR puts together MCMC algorithm
involving blocks from several simple and familiar algorithms.
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