Bayesian Econometrics Lab 1

Ping Wu

University of Strathclyde ping.wu@strath.ac.uk

Ping Wu 1/10

Useful Information & Assessment

- Labs are weeks 2, 4, 5 and 6.
- Before each class, I will email you with my teaching materials.
- They will be uploaded after each lab.
- In lab 3 I will provide a quick demo of the BEAR toolbox in case you would like to use it for your empirical project.

Ping Wu 2/10

What to Aim for in Labs

Don't worry about perfectly completing every exercise or understanding every line of code.

Instead aim to:

- understand the broad ideas behind each exercise/piece of code.
- begin the (gradual!) process of developing your programming skills.
- learn about what strategies might work well for you when trying to understand and modify code for your own work.

3/10

Ping Wu

Bayesian Econometric Code Structure

The code usually features most of the following parts. If you know this it's harder to get lost.

- Load data, transform variables (e.g. obtain stationarity) and get into correct format (e.g. one matrix for dependent variable(s), one matrix for predictors).
- Set prior hyperparameters and estimate OLS quantities.
- Set up storage matrices to store important numbers in (saves time and memory).
- Estimation: if analytical results are not available use posterior simulator (e.g. Monte Carlo integration).
- Produce additional results necessary for interpretation (e.g. impulse response functions).

◆ロト ◆部ト ◆恵ト ◆恵ト 恵 めなぐ

Some Strategies that May Help

- Begin by looking at the entire script: can you identify the sections outlined in the previous slide?
- Then try to digest small chunks of code at a time. You can paste a section of code into a separate script and experiment.
 Or you can run different parts of the code separately.
- Keep the relevant lectures notes nearby so you can make connections between: the concepts learned in class, the formulae outlines in class and the code.
- Translate the code into economics: $b0 = 0 \rightarrow \underline{\beta} = 0 \rightarrow \text{hyperparameter}$ is equal to $0 \rightarrow \text{prior}$ belief that coefficient β is $0 \rightarrow \text{prior}$ belief that the regressor associated with β has no explanatory power.

Useful Matlab Features

- evaluate selection: highlight a section of the script and hit F9
- help on selection: highlight a function and hit F1
- keyboard: insert into your script to pause at a certain point
- annotate your script using %
- divide your code into sections using %%
- to see the contents of a matrix: right click and hit open (or use the *display* command)

Ping Wu 6/10

Lab 1: Matlab Basics

- Key concepts: Drawing from Standard Distributions, Monte Carlo Integration, Gibbs Sampling
- I'll discuss the Matlab interface and am happy to go through the features discussed on the previous slide.
- You can work through the rest of the exercises at your own pace.

Ping Wu 7/10

Lab 2: Bayesian Analysis of the Regression Model

- Key concepts: Normal linear regression, BMA, posterior simulator sensitivity.
- Relevant material: Normal Linear Regression Slides, Fat Data Slides.
- Joshua Chan website (for those who want more).

8/10

Ping Wu

Lab 3: Machine Learning Methods and VARs

- Key concepts: SSVS, The LASSO, BART and Impulse response analysis
- Relevant material: Fat data handout, KK monograph, Gary's BART paper
- I'll begin with the BEAR toolbox demonstration.

Ping Wu

Lab 4: State Space Models and TVP-VARs

- Key concepts: State Space Models, TVP-VARs
- Relevant material: KK monograph

Ping Wu 10 / 10