Computer Tutorial 4: State Space Models and TVP-VARs

Data and Matlab code for all questions are available on the course website.

Exercise 1: Inflation Persistence in the US

Use the unobserved components model of Stock and Watson (2007) "Why Has U.S. Inflation Become Harder to Forecast?," Journal of Money, Credit and Banking. The program, TVP_AR_SW.m, contains code for the model given in their equations (8) - (11) which we replicate here:

$$\begin{array}{rcl} \pi_{t} & = & \tau_{t} + \eta_{t}, \ \eta_{t} \sim N\left(0, \sigma_{t}^{\eta}\right) \\ \tau_{t} & = & \tau_{t-1} + \varepsilon_{t}, \ \varepsilon_{t} \sim N\left(0, \sigma_{t}^{\varepsilon}\right) \\ \log\left(\sigma_{t}^{\eta}\right) & = & \log\left(\sigma_{t-1}^{\eta}\right) + v_{t}^{\eta}, \ v_{t}^{\eta} \sim N\left(0, \gamma_{1}\right) \\ \log\left(\sigma_{t}^{\varepsilon}\right) & = & \log\left(\sigma_{t-1}^{\varepsilon}\right) + v_{t}^{\varepsilon}, \ v_{t}^{\varepsilon} \sim N\left(0, \gamma_{2}\right) \end{array}$$

We provide data on three measures of inflation (π_t) , CPI inflation, PPI inflation and GDP deflator inflation. Use the code to plot trend inflation (τ_t) and the volatilities σ_t^{η} and σ_t^{ε} . Is there evidence that σ_t^{η} is varying over time? Is there evidence that σ_t^{ε} is varying over time?

Optional: Stock and Watson (2007) also estimate a model (see their equations (5) and (6)) where state and measurement equation variances are constant ($\sigma_t^{\eta} = \sigma^{\eta}$ and $\sigma_t^{\varepsilon} = \sigma^{\varepsilon}$). You can also consider models where there is stochastic volatility in one equation but not the other (i.e. $\sigma_t^{\varepsilon} = \sigma^{\varepsilon}$ but σ_t^{η} is time varying or $\sigma_t^{\eta} = \sigma^{\eta}$ but σ_t^{ε} is time varying). Modify the code to estimate these models and compare results to the full model.

Optional: I have not included a question on the TVP-VAR since this is covered in the lecture after this computer lab. Nevertheless, I have included code for estimating it in this package of computer materials. You may wish to experiment with it in your own time after I have covered the topic in lectures.